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Abstract—Stock trading strategies play a critical role in
investment. However, it is challenging to design a profitable
strategy in a complex and dynamic stock market. In this
paper, we propose an ensemble strategy that employs deep
reinforcement schemes to learn a stock trading strategy by
maximizing investment return. We train a deep reinforcement
learning agent and obtain an ensemble trading strategy
using three actor-critic based algorithms: Proximal Policy
Optimization (PPO), Advantage Actor Critic (A2C), and
Deep Deterministic Policy Gradient (DDPG). The ensemble
strategy inherits and integrates the best features of the three
algorithms, thereby robustly adjusting to different market
situations. In order to avoid the large memory consumption
in training networks with continuous action space, we employ
a load-on-demand technique for processing very large data.
We test our algorithms on the 30 Dow Jones stocks that have
adequate liquidity. The performance of the trading agent with
different reinforcement learning algorithms is evaluated and
compared with both the Dow Jones Industrial Average index
and the traditional min-variance portfolio allocation strategy.
The proposed deep ensemble strategy is shown to outperform
the three individual algorithms and two baselines in terms of
the risk-adjusted return measured by the Sharpe ratio.

Index Terms—Deep reinforcement learning, Markov De-
cision Process, automated stock trading, ensemble strategy,
actor-critic framework

I. INTRODUCTION

Profitable automated stock trading strategy is vital to
investment companies and hedge funds. It is applied to
optimize capital allocation and maximize investment per-
formance, such as expected return. Return maximization
can be based on the estimates of potential return and
risk. However, it is challenging for analysts to consider
all relevant factors in a complex and dynamic stock market
[1], [2], [3].

Existing works are not satisfactory. A traditional ap-
proach that employed two steps was described in [4]. First,
the expected stock return and the covariance matrix of stock
prices are computed. Then, the best portfolio allocation
strategy can be obtained by either maximizing the return for
a given risk ratio or minimizing the risk for a pre-specified
return. This approach, however, is complex and costly to
implement since the portfolio managers may want to revise
the decisions at each time step, and take other factors into
account, such as transaction cost. Another approach for

Fig. 1. Overview of reinforcement learning-based stock trading strategy.

stock trading is to model it as a Markov Decision Process
(MDP) and use dynamic programming to derive the optimal
strategy [5], [6], [7], [8]. However, the scalability of this
model is limited due to the large state spaces when dealing
with the stock market.

In recent years, machine learning and deep learning
algorithms have been widely applied to build prediction and
classification models for the financial market. Fundamentals
data (earnings report) and alternative data (market news,
academic graph data, credit card transactions, and GPS
traffic, etc.) are combined with machine learning algorithms
to extract new investment alphas or predict a company’s
future performance [9], [10], [11], [12]. Thus, a predictive
alpha signal is generated to perform stock selection. How-
ever, these approaches are only focused on picking high
performance stocks rather than allocating trade positions
or shares between the selected stocks. In other words, the
machine learning models are not trained to model positions.

In this paper, we propose a novel ensemble strategy
that combines three deep reinforcement learning algorithms
and finds the optimal trading strategy in a complex and
dynamic stock market. The three actor-critic algorithms
[13] are Proximal Policy Optimization (PPO) [14], [15],
Advantage Actor Critic (A2C) [16], [17], and Deep Deter-
ministic Policy Gradient (DDPG) [18], [15], [19]. Our deep
reinforcement learning approach is described in Figure 1.
By applying the ensemble strategy, we make the trading
strategy more robust and reliable. Our strategy can adjust
to different market situations and maximize return subject
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to risk constraint. First, we build an environment and define
action space, state space, and reward function. Second, we
train the three algorithms that take actions in the environ-
ment. Third, we ensemble the three agents together using
the Sharpe ratio that measures the risk-adjusted return. The
effectiveness of the ensemble strategy is verified by its
higher Sharpe ratio than both the min-variance portfolio
allocation strategy and the Dow Jones Industrial Average 1

(DJIA).
The remainder of this paper is organized as follows.

Section 2 introduces related works. Section 3 provides a
description of our stock trading problem. In Section 4, we
set up our stock trading environment. In Section 5, we
drive and specify the three actor-critic based algorithms and
our ensemble strategy. Section 6 describes the stock data
preprocessing and our experimental setup, and presents the
performance evaluation of the proposed ensemble strategy.
We conclude this paper in Section 7.

II. RELATED WORKS

Recent applications of deep reinforcement learning in
financial markets consider discrete or continuous state and
action spaces, and employ one of these learning approaches:
critic-only approach, actor-only approach, or actor-critic
approach [20]. Learning models with continuous action
space provide finer control capabilities than those with
discrete action space.

The critic-only learning approach, which is the most
common, solves a discrete action space problem using, for
example, Deep Q-learning (DQN) and its improvements,
and trains an agent on a single stock or asset [21], [22],
[23]. The idea of the critic-only approach is to use a Q-
value function to learn the optimal action-selection policy
that maximizes the expected future reward given the current
state. Instead of calculating a state-action value table, DQN
minimizes the error between estimated Q-value and target
Q-value over a transition, and uses a neural network to
perform function approximation. The major limitation of
the critic-only approach is that it only works with discrete
and finite state and action spaces, which is not practical for
a large portfolio of stocks, since the prices are of course
continuous.

The actor-only approach has been used in [24], [25], [26].
The idea here is that the agent directly learns the optimal
policy itself. Instead of having a neural network to learn the
Q-value, the neural network learns the policy. The policy is
a probability distribution that is essentially a strategy for a
given state, namely the likelihood to take an allowed action.
Recurrent reinforcement learning is introduced to avoid the
curse of dimensionality and improves trading efficiency in
[24]. The actor-only approach can handle the continuous
action space environments.

The actor-critic approach has been recently applied in
finance [27], [28], [17], [19]. The idea is to simultaneously

1The Dow Jones Industrial Average is a stock market index that shows
how 30 large, publicly owned companies based in the United States have
traded during a standard trading session in the stock market.

Fig. 2. A starting portfolio value with three actions result in three possible
portfolios. Note that ”hold” may lead to different portfolio values due to
the changing stock prices.

update the actor network that represents the policy, and
the critic network that represents the value function. The
critic estimates the value function, while the actor updates
the policy probability distribution guided by the critic with
policy gradients. Over time, the actor learns to take better
actions and the critic gets better at evaluating those actions.
The actor-critic approach has proven to be able to learn and
adapt to large and complex environments, and has been
used to play popular video games, such as Doom [29].
Thus, the actor-critic approach is promising in trading with
a large stock portfolio.

III. PROBLEM DESCRIPTION

We model stock trading as a Markov Decision Process
(MDP), and formulate our trading objective as a maximiza-
tion of expected return [30].

A. MDP Model for Stock Trading

To model the stochastic nature of the dynamic stock
market, we employ a Markov Decision Process (MDP) as
follows:
• State s = [p,h, b]: a vector that includes stock prices
p ∈ RD+ , the stock shares h ∈ ZD+ , and the remaining
balance b ∈ R+, where D denotes the number of
stocks and Z+ denotes non-negative integers.

• Action a: a vector of actions over D stocks. The
allowed actions on each stock include selling, buying,
or holding, which result in decreasing, increasing, and
no change of the stock shares h, respectively.

• Reward r(s, a, s′): the direct reward of taking action
a at state s and arriving at the new state s′.

• Policy π(s): the trading strategy at state s, which is
the probability distribution of actions at state s.

• Q-value Qπ(s, a): the expected reward of taking action
a at state s following policy π.

The state transition of a stock trading process is shown
in Figure 2. At each state, one of three possible actions is
taken on stock d (d = 1, ..., D) in the portfolio.
• Selling k[d] ∈ [1,h[d]] shares results in ht+1[d] =
ht[d]− k[d], where k[d] ∈ Z+ and d = 1, ..., D.
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• Holding, ht+1[d] = ht[d].
• Buying k[d] shares results in ht+1[d] = ht[d] +k[d].

At time t an action is taken and the stock prices update
at t+1, accordingly the portfolio values may change from
”portfolio value 0” to ”portfolio value 1”, ”portfolio value
2”, or ”portfolio value 3”, respectively, as illustrated in
Figure 2. Note that the portfolio value is pTh+ b.

B. Incorporating Stock Trading Constraints

The following assumption and constraints reflect con-
cerns for practice: transaction costs, market liquidity, risk-
aversion, etc.

• Market liquidity: the orders can be rapidly executed at
the close price. We assume that stock market will not
be affected by our reinforcement trading agent.

• Nonnegative balance b ≥ 0: the allowed actions should
not result in a negative balance. Based on the action at
time t, the stocks are divided into sets for sell S, buy-
ing B, and holding H, where S∪B∪H = {1, · · · , D}
and they are nonoverlapping. Let pBt = [pit : i ∈ B]
and kBt = [kit : i ∈ B] be the vectors of price
and number of buying shares for the stocks in the
buying set. We can similarly define pSt and kSt for
the selling stocks, and pHt and kHt for the holding
stocks. Hence, the constraint for non-negative balance
can be expressed as

bt+1 = bt + (pSt )TkSt − (pBt )TkBt ≥ 0. (1)

• Transaction cost: transaction costs are incurred for
each trade. There are many types of transaction costs
such as exchange fees, execution fees, and SEC fees.
Different brokers have different commission fees. De-
spite these variations in fees, we assume our transac-
tion costs to be 0.1% of the value of each trade (either
buy or sell) as in [9]:

ct = pTkt × 0.1%. (2)

• Risk-aversion for market crash: there are sudden
events that may cause stock market crash, such as
wars, collapse of stock market bubbles, sovereign debt
default, and financial crisis. To control the risk in a
worst-case scenario like 2008 global financial crisis,
we employ the financial turbulence index turbulencet
that measures extreme asset price movements [31]:

turbulencet = (yt − µ)Σ−1(yt − µ)′ ∈ R, (3)

where yt ∈ RD denotes the stock returns for current
period t, µ ∈ RD denotes the average of historical
returns, and Σ ∈ RD×D denotes the covariance of
historical returns. When turbulencet is higher than a
threshold, which indicates extreme market conditions,
we simply halt buying and the trading agent sells all
shares. We resume trading once the turbulence index
returns under the threshold.

C. Return Maximization as Trading Goal

We define our reward function as the change of the
portfolio value when action a is taken at state s and arriving
at new state s′. The goal is to design a trading strategy that
maximizes the change of the portfolio value:

r(st, at, st+1) = (bt+1 + pTt+1ht+1)− (bt + pTt ht)− ct,
(4)

where the first and second terms denote the portfolio value
at t+1 and t, respectively. To further decompose the return,
we define the transition of the shares ht is defined as

ht+1 = ht − kSt + kBt , (5)

and the transition of the balance bt is defined in (1). Then
(4) can be rewritten as

r(st, at, st+1) = rH − rS + rB − ct, (6)

where

rH = (pHt+1 − pHt )ThHt , (7)

rS = (pSt+1 − pSt )ThSt , (8)

rB = (pBt+1 − pBt )ThBt , (9)

where rH , rS , and rB denote the change of the portfolio
value comes from holding, selling, and buying shares
moving from time t to t + 1, respectively. Equation (6)
indicates that we need to maximize the positive change
of the portfolio value by buying and holding the stocks
whose price will increase at next time step and minimize
the negative change of the portfolio value by selling the
stocks whose price will decrease at next time step.

Turbulence index turbulencet is incorporated with the
reward function to address our risk-aversion for market
crash. When the index in (3) goes above a threshold,
Equation (8) becomes

rsell = (pt+1 − pt)Tkt, (10)

which indicates that we want to minimize the negative
change of the portfolio value by selling all held stocks,
because all stock prices will fall.

The model is initialized as follows. p0 is set to the stock
prices at time 0 and b0 is the amount of initial fund. The h
and Qπ(s, a) are 0, and π(s) is uniformly distributed among
all actions for each state. Then, Qπ(st, at) is updated
through interacting with the stock market environment. The
optimal strategy is given by the Bellman Equation, such
that the expected reward of taking action at at state st
is the expectation of the summation of the direct reward
r(st, at, st+1) and the future reward in the next state
st+1. Let the future rewards be discounted by a factor of
0 < γ < 1 for convergence purpose, then we have

Qπ(st, at) = Est+1 [r(st, at, st+1)+γEat+1∼π(st+1)[Qπ(st+1, at+1)]].
(11)

The goal is to design a trading strategy that max-
imizes the positive cumulative change of the portfolio
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value r(st, at, st+1) in the dynamic environment, and we
employ the deep reinforcement learning method to solve
this problem.

IV. STOCK MARKET ENVIRONMENT

Before training a deep reinforcement trading agent, we
carefully build the environment to simulate real world
trading which allows the agent to perform interaction and
learning. In practical trading, various information needs
to be taken into account, for example the historical stock
prices, current holding shares, technical indicators, etc. Our
trading agent needs to obtain such information through
the environment, and take actions defined in the previous
section. We employ OpenAI gym to implement our envi-
ronment and train the agent [32], [33], [34].

A. Environment for Multiple Stocks

We use a continuous action space to model the trading of
multiple stocks. We assume that our portfolio has 30 stocks
in total.

1) State Space: We use a 181-dimensional vector
consists of seven parts of information to represent
the state space of multiple stocks trading environment:
[bt,pt,ht,Mt,Rt,Ct,Xt]. Each component is defined as
follows:
• bt ∈ R+: available balance at current time step t.
• pt ∈ R30

+ : adjusted close price of each stock.
• ht ∈ Z30

+ : shares owned of each stock.
• Mt ∈ R30: Moving Average Convergence Divergence

(MACD) is calculated using close price. MACD is one
of the most commonly used momentum indicator that
identifies moving averages [35].

• Rt ∈ R30
+ : Relative Strength Index (RSI) is calculated

using close price. RSI quantifies the extent of recent
price changes. If price moves around the support line,
it indicates the stock is oversold, and we can perform
the buy action. If price moves around the resistance, it
indicates the stock is overbought, and we can perform
the selling action. [35].

• Ct ∈ R30
+ : Commodity Channel Index (CCI) is calcu-

lated using high, low and close price. CCI compares
current price to average price over a time window to
indicate a buying or selling action [36].

• Xt ∈ R30: Average Directional Index (ADX) is
calculated using high, low and close price. ADX
identifies trend strength by quantifying the amount of
price movement [37].

2) Action Space: For a single stock, the action space
is defined as {−k, ...,−1, 0, 1, ..., k}, where k and −k
presents the number of shares we can buy and sell, and
k ≤ hmax while hmax is a predefined parameter that sets
as the maximum amount of shares for each buying action.
Therefore the size of the entire action space is (2k+ 1)30.
The action space is then normalized to [−1, 1], since the
RL algorithms A2C and PPO define the policy directly on
a Gaussian distribution, which needs to be normalized and
symmetric [34].

Fig. 3. Overview of the load-on-demand technique.

B. Memory Management

The memory consumption for training could grow expo-
nentially with the number of stocks, data types, features of
the state space, number of layers and neurons in the neural
networks, and batch size. To tackle the problem of memory
requirements, we employ a load-on-demand technique for
efficient use of memory. As shown in Figure 3, the load-
on-demand technique does not store all results in memory,
rather, it generates them on demand. The memory is only
used when the result is requested, hence the memory usage
is reduced.

V. TRADING AGENT BASED ON DEEP REINFORCEMENT
LEARNING

We use three actor-critic based algorithms to implement
our trading agent. The three algorithms are A2C, DDPG,
and PPO, respectively. An ensemble strategy is proposed to
combine the three agents together to build a robust trading
strategy.

A. Advantage Actor Critic (A2C)

A2C [16] is a typical actor-critic algorithm and we use
it a component in the ensemble strategy. A2C is introduced
to improve the policy gradient updates. A2C utilizes an
advantage function to reduce the variance of the policy
gradient. Instead of only estimates the value function, the
critic network estimates the advantage function. Thus, the
evaluation of an action not only depends on how good the
action is, but also considers how much better it can be. So
that it reduces the high variance of the policy network and
makes the model more robust.

A2C uses copies of the same agent to update gradients
with different data samples. Each agent works indepen-
dently to interact with the same environment. In each
iteration, after all agents finish calculating their gradients,
A2C uses a coordinator to pass the average gradients over
all the agents to a global network. So that the global
network can update the actor and the critic network. The
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presence of a global network increases the diversity of
training data. The synchronized gradient update is more
cost-effective, faster and works better with large batch sizes.
A2C is a great model for stock trading because of its
stability.

The objective function for A2C is:

∇Jθ(θ) = E[

T∑
t=1

∇θ log πθ(at|st)A(st, at)], (12)

where πθ(at|st) is the policy network, A(st, at) is the
Advantage function can be written as:

A(st, at) = Q(st, at)− V (st), (13)

or

A(st, at) = r(st, at, st+1) + γV (st+1)− V (st). (14)

B. Deep Deterministic Policy Gradient (DDPG)

DDPG [18] is used to encourage maximum investment
return. DDPG combines the frameworks of both Q-learning
[38] and policy gradient [39], and uses neural networks as
function approximators. In contrast with DQN that learns
indirectly through Q-values tables and suffers the curse of
dimensionality problem [40], DDPG learns directly from
the observations through policy gradient. It is proposed
to deterministically map states to actions to better fit the
continuous action space environment.

At each time step, the DDPG agent performs an action
at at st, receives a reward rt and arrives at st+1. The
transitions (st, at, st+1, rt) are stored in the replay buffer
R. A batch of N transitions are drawn from R and the
Q-value yi is updated as:

yi = ri + γQ′(si+1, µ
′(si+1|θµ

′
, θQ

′
)), i = 1, · · · , N.

(15)
The critic network is then updated by minimizing the loss
function L(θQ) which is the expected difference between
outputs of the target critic network Q′ and the critic network
Q, i.e,

L(θQ) = Est,at,rt,st+1∼buffer[(yi −Q(st, at|θQ))2]. (16)

DDPG is effective at handling continuous action space, and
so it is appropriate for stock trading.

C. Proximal Policy Optimization (PPO)

We explore and use PPO as a component in the ensemble
method. PPO [14] is introduced to control the policy
gradient update and ensure that the new policy will not be
too different from the previous one. PPO tries to simplify
the objective of Trust Region Policy Optimization (TRPO)
by introducing a clipping term to the objective function
[41], [14].

Let us assume the probability ratio between old and new
policies is expressed as:

rt(θ) =
πθ(at|st)
πθold(at|st)

. (17)

The clipped surrogate objective function of PPO is:

JCLIP(θ) =Êt[min(rt(θ)Â(st, at),

clip(rt(θ), 1− ε, 1 + ε)Â(st, at))],
(18)

where rt(θ)Â(st, at) is the normal policy gradient objec-
tive, and Â(st, at) is the estimated advantage function. The
function clip(rt(θ), 1− ε, 1 + ε) clips the ratio rt(θ) to be
within [1 − ε, 1 + ε]. The objective function of PPO takes
the minimum of the clipped and normal objective. PPO
discourages large policy change move outside of the clipped
interval. Therefore, PPO improves the stability of the policy
networks training by restricting the policy update at each
training step. We select PPO for stock trading because it is
stable, fast, and simpler to implement and tune.

D. Ensemble Strategy

Our purpose is to create a highly robust trading strategy.
So we use an ensemble strategy to automatically select the
best performing agent among PPO, A2C, and DDPG to
trade based on the Sharpe ratio. The ensemble process is
described as follows:

Step 1. We use a growing window of n months to retrain
our three agents concurrently. In this paper we retrain our
three agents at every three months.

Step 2. We validate all three agents by using a 3-month
validation rolling window after training window to pick the
best performing agent with the highest Sharpe ratio [42].
The Sharpe ratio is calculated as:

Sharpe ratio =
r̄p − rf
σp

, (19)

where r̄p is the expected portfolio return, rf is the risk
free rate, and σp is the portfolio standard deviation. We
also adjust risk-aversion by using turbulence index in our
validation stage.

Step 3. After the best agent is picked, we use it to predict
and trade for the next quarter.

The reason behind this choice is that each trading agent
is sensitive to different type of trends. One agent performs
well in a bullish trend but acts bad in a bearish trend.
Another agent is more adjusted to a volatile market. The
higher an agent’s Sharpe ratio, the better its returns have
been relative to the amount of investment risk it has taken.
Therefore, we pick the trading agent that can maximize the
returns adjusted to the increasing risk.

VI. PERFORMANCE EVALUATIONS

In this section, we present the performance evaluation
of our proposed scheme. We perform backtesting for the
three individual agents and our ensemble strategy. The
result in Table 2 demonstrates that our ensemble strategy
achieves higher Sharpe ratio than the three agents, Dow
Jones Industrial Average and the traditional min-variance
portfolio allocation strategy.

Our codes are available on Github 2.
2Link: https://github.com/AI4Finance-LLC/Deep-Reinforcement-

Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020
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Fig. 4. Stock data splitting.

A. Stock Data Preprocessing

We select the Dow Jones 30 constituent stocks (at
01/01/2016) as our trading stock pool. Our backtestings
use historical daily data from 01/01/2009 to 05/08/2020
for performance evaluation. The stock data can be down-
loaded from the Compustat database through the Wharton
Research Data Services (WRDS) [43]. Our dataset consists
of two periods: in-sample period and out-of-sample period.
In-sample period contains data for training and validation
stages. Out-of-sample period contains data for trading stage.
In the training stage, we train three agents using PPO, A2C,
and DDPG, respectively. Then, a validation stage is then
carried out for validating the 3 agents by Sharpe ratio, and
adjusting key parameters, such as learning rate, number of
episodes, etc. Finally, in the trading stage, we evaluate the
profitability of each of the algorithms.

The whole dataset is split as shown in Figure 4. Data
from 01/01/2009 to 09/30/2015 is used for training, and the
data from 10/01/2015 to 12/31/2015 is used for validation
and tuning of parameters. Finally, we test our agent’s
performance on trading data, which is the unseen out-
of-sample data from 01/01/2016 to 05/08/2020. To better
exploit the trading data, we continue training our agent
while in the trading stage, since this will help the agent
to better adapt to the market dynamics.

B. Performance Comparisons

1) Agent Selection: From Table 1, we can see that PPO
has the best validation Sharpe ratio of 0.06 from 2015/10 to
2015/12, so we use PPO to trade for the next quarter from
2016/01 to 2016/03. DDPG has the best validation Sharpe
ratio of 0.61 from 2016/01 to 2016/03, so we use DDPG
to trade for the next quarter from 2016/04 to 2016/06. A2C
has the best validation Sharpe ratio of -0.15 from 2020/01
to 2020/03, so we use A2C to trade for the next quarter
from 2020/04 to 2020/05. Five metrics are used to evaluate
our results:

• Cumulative return: is calculated by subtracting the
portfolio’s final value from its initial value, and then
dividing by the initial value.

• Annualized return: is the geometric average amount
of money earned by the agent each year over the time
period.

• Annualized volatility: is the annualized standard devi-
ation of portfolio return.

• Sharpe ratio: is calculated by subtracting the annual-
ized risk free rate from the annualized return, and the
dividing by the annualized volatility.

• Max drawdown: is the maximum percentage loss dur-
ing the trading period.

TABLE I
SHARPE RATIOS OVER TIME.

Trading Quarter PPO A2C DDPG Picked Model
2016/01-2016/03 0.06 0.03 0.05 PPO
2016/04-2016/06 0.31 0.53 0.61 DDPG
2016/07-2016/09 -0.02 0.01 0.05 DDPG
2016/10-2016/12 0.11 0.01 0.09 PPO
2017/01-2017/03 0.53 0.44 0.13 PPO
2017/04-2017/06 0.29 0.44 0.12 A2C
2017/07-2017/09 0.4 0.32 0.15 PPO
2017/10-2017/12 -0.05 -0.04 0.12 DDPG
2018/01-2018/03 0.71 0.63 0.62 PPO
2018/04-2018/06 -0.08 -0.02 -0.01 DDPG
2018/07-2018/09 -0.17 0.21 -0.03 A2C
2018/10-2018/12 0.30 0.48 0.39 A2C
2019/01-2019/03 -0.26 -0.25 -0.18 DDPG
2019/04-2019/06 0.38 0.29 0.25 PPO
2019/07-2019/09 0.53 0.47 0.52 PPO
2019/10-2019/12 -0.22 0.11 -0.22 A2C
2020/01-2020/03 -0.36 -0.13 -0.22 A2C
2020/04-2020/05 -0.42 -0.15 -0.58 A2C

Cumulative return reflects returns at the end of trading
stage. Annualized return is the return of the portfolio at the
end of each year. Annualized volatility and max drawdown
measure the robustness of a model. The Sharpe ratio is
a widely used metric that combines the return and risk
together.

2) Analysis of Agent Performance: From both Table 2
and Figure 5, we can observe that the A2C agent is more
adaptive to risk. It has the lowest annual volatility 10.4%
and max drawdown −10.2% among the three agents. So
A2C is good at handling a bearish market. PPO agent
is good at following trend and acts well in generating
more returns, it has the highest annual return 15.0% and
cumulative return 83.0% among the three agents. So PPO
is preferred when facing a bullish market. DDPG performs
similar but not as good as PPO, it can be used as a
complementary strategy to PPO in a bullish market. All
three agents’ performance outperform the two benchmarks,
Dow Jones Industrial Average and min-variance portfolio
allocation of DJIA, respectively.

3) Performance under Market Crash: In Figure 6, we
can see that our ensemble strategy and the three agents
perform well in the 2020 stock market crash event. When
the turbulence index reaches a threshold, it indicates an
extreme market situation. Then our agents will sell off all
currently held shares and wait for the market to return to
normal to resume trading. By incorporating the turbulence
index, the agents are able to cut losses and successfully
survive the stock market crash in March 2020. We can
tune the turbulence index threshold lower for higher risk
aversion.

4) Benchmark Comparison: Figure 5 demonstrates that
our ensemble strategy significantly outperforms the DJIA
and the min-variance portfolio allocation [9]. As can be
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Fig. 5. Cumulative return curves of our ensemble strategy and three actor-critic based algorithms, the min-variance portfolio allocation strategy, and
the Dow Jones Industrial Average. (Initial portfolio value $1, 000, 000, from 2016/01/04 to 2020/05/08).

TABLE II
PERFORMANCE EVALUATION COMPARISON.

(2016/01/04-2020/05/08) Ensemble (Ours) PPO A2C DDPG Min-Variance DJIA
Cumulative Return 70.4% 83.0% 60.0% 54.8% 31.7% 38.6%
Annual Return 13.0% 15.0% 11.4% 10.5% 6.5% 7.8%
Annual Volatility 9.7% 13.6% 10.4% 12.3% 17.8% 20.1%
Sharpe Ratio 1.30 1.10 1.12 0.87 0.45 0.47
Max Drawdown -9.7% -23.7% -10.2% -14.8% -34.3% -37.1%

Fig. 6. Performance during the stock market crash in the first quarter of 2020.

seen from Table 2, the ensemble strategy achieves a Sharpe
ratio 1.30, which is much higher than the Sharpe ratio
of 0.47 for DJIA, and 0.45 for the min-variance portfolio
allocation. The annualized return of the ensemble strategy
is also much higher, the annual volatility is much lower,
indicating that the ensemble strategy beats both the DJIA
and min-variance portfolio allocation in balancing risk and
return. The ensemble strategy also outperforms A2C with
a Sharpe ratio of 1.12, PPO with a Sharpe ratio of 1.10,
and DDPG with a Sharpe ratio of 0.87, respectively. There-
fore, our findings demonstrate that the proposed ensemble
strategy can effectively develop a trading strategy that
outperforms the three individual algorithms and the two
baselines.

VII. CONCLUSION

In this paper, we have explored the potential of using
actor-critic based algorithms which are Proximal Policy
Optimization (PPO), Advantage Actor Critic (A2C), and
Deep Deterministic Policy Gradient (DDPG) agents to learn
stock trading strategy. In order to adjust to different market
situations, we use an ensemble strategy to automatically
select the best performing agent to trade based on the
Sharpe ratio. Results show that our ensemble strategy
outperforms the three individual algorithms, the Dow Jones
Industrial Average and min-variance portfolio allocation
method in terms of Sharpe ratio by balancing risk and return
under transaction costs.
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For future work, it will be interesting to explore more
sophisticated model [44], solve empirical challenges [45],
deal with large-scale data [46] such as S&P 500 con-
stituent stocks. We can also explore more features for the
state space such as adding advanced transaction cost and
liquidity model [47], incorporating fundamental analysis
indicators [9], natural language processing analysis of fi-
nancial market news [48], and ESG features [12] to our
observations. We are interested in directly using Sharpe
ratio as the reward function, but the agents need to observe
a lot more historical data, the state space will increase
exponentially.
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