

# **WORKING PAPER SERIES**

## WP01/2014

An Improved Moving Average Technical Trading Rule

Fotis Papailias Dimitrios D. Thomakos

### An Improved Moving Average Technical Trading Rule

Fotis Papailias<sup>1,q\*</sup>, Dimitrios D. Thomakos<sup>2,3,q</sup>

#### Abstract

This paper proposes a modified version of the widely used price and moving average cross-over trading strategies. The suggested approach (presented in its 'long only' version) is a combination of cross-over 'buy' signals and a dynamic threshold value which acts as a dynamic trailing stop. The trading behavior and performance from this modified strategy is different from the standard approach with results showing that, on average, the proposed modification increases the cumulative return and the Sharpe ratio of the investor while exhibiting smaller maximum drawdown and smaller drawdown duration than the standard strategy.

#### Keywords

Dow Jones, ETF, Exchange Rate, Moving average, Price cross-over, S&P500, Threshold, Trailing stop, Technical analysis, Technical Trading, Trading strategies

#### Version

This Draft: June 1, 2014 First Draft: September 11, 2011

<sup>1</sup>Queen's University Management School, Queen's University Belfast, UK

<sup>2</sup>Department of Economics, University of Peloponnese, Greece

<sup>3</sup>Rimini Centre for Economic Analysis, Italy

qquantf research, www.quantf.com

\*Corresponding author: f.papailias@quantf.com, f.papailias@qub.ac.uk

#### Contents

| 1   | Introduction                                     | 1  |
|-----|--------------------------------------------------|----|
| 2   | Methodology                                      | 2  |
| 2.1 | Trading strategies                               | 2  |
| 2.2 | Strategy evaluation                              | 4  |
| 3   | Data                                             | 4  |
| 4   | Discussion of results                            | 5  |
| 4.1 | Results on DJIA and S&P500                       | 5  |
| 4.2 | Results on SPY                                   | 7  |
| 5   | Results on the other ETFs                        | 8  |
| 6   | Results on EUR/USD exchange rate                 | 8  |
| 7   | Further results and discussion on strategy usage | 8  |
| 8   | Concluding remarks                               | 9  |
| 9   | Figures & Tables                                 | 12 |
| 10  | Addendum                                         | 25 |

#### 1. Introduction

The use of averages underlies all attempts of empirical modeling and the use of moving averages, in particular, has a long and distinguished history in smoothing and forecasting at least from the time of the publication of the book of Brown (1963). Moving averages form the simplest statistical construct that is widely used in trading the financial markets of all types, foreign exchange and equities more than others, in a variety of different interpretations of trading strategies (or rules). The purpose of this paper is to propose a modification to the standard cross-over strategy, based on prices & moving averages, that enhances its performance along all evaluation measures, providing (on average) higher cumulative returns, higher Sharpe ratios and lower drawdowns.

Moving averages are a staple in the arsenal of tools in technical analysis trading and their properties and efficacy have been considered in many previous academic studies<sup>1</sup> some of which we discuss below. Brown and Jennings (1989) is an early reference from economists on technical analysis. Brock et al. (1992) examine some simple technical trading rules and associate them with the properties of stock returns while Neely (1997) provides a review of technical analysis (with emphasis on moving average rules) in foreign exchange markets and LeBarron (1999) examines the profitability of technical trading rules and foreign exchange intervention. Neely and Weller (2011) provide further discussion on Neely's earlier paper. Lo et al. (2000) have a comprehensive review of technical analysis, that includes the use of moving averages, where they try to provide some underlying statistical foundations

<sup>&</sup>lt;sup>1</sup>The literature on technical analysis from the practitioners' perspective is huge and cannot possibly be reviewed here.

to technical analysis trading rules. More recently, Okunev and White (2003), Nicolau (2007), Faber (2009), Friesen et al. (2009), Harris and Yilmaz (2009), and Zhu and Zhou (2009) have interesting theory and applications that are based on moving average technical trading rules. Okunev and White (2003) examine the profitability of moving average-type rules, and the reasons behind it, in currency markets. Nicolau (2007) and Zhu and Zhou (2009) develop continuous time models that are used to explain various aspects of behavior of moving averages; the latter paper is particularly interesting since it shows how to optimize a moving average approach for asset allocation. The same underlying intuition, with the application but without the theory, underlies the work of Faber (2009) which is concerned with the use of moving averages as 'market timing' instruments. His main concern, from a practioner's perspective, is whether a simple, 200-day moving average, price cross-over strategy can be used to avoid the pitfalls and large drawdowns of the buy & hold strategy - and subsequently be used in an asset allocation framework. Friesen et al. (2009) discuss reasons and explanations behind trading rule profitability, including 'confirmation bias' and show how certain price patterns arise and lead to certain autocorrelation structure. Finally, Harris and Yilmaz (2009) examine whether a smoothing approach can be used profitably in foreign exchange trading, by comparing moving average rules with the use of the Hodrick-Prescott (1990) filter and kernel smoothing. There are many more academic references on the use and profitability of technical trading rules, beyond moving averages, whereas the above short list is mainly aimed on some papers that used smoothing methods for trading.

The modification that we propose in this paper is simple, intuitive, has a probabilistic explanation (based on the notion of 'return to the origin' in random walk parlance) and can easily be implemented for actual applications. It consists of a rule that relates the current price of an asset with the price of the last 'buy' signal issued by a moving average strategy (making this latter price a dynamic threshold) and it works as a dynamic trailing stop. We present a 'long only' version of the strategy but the adaptation to both long-and-short trading is immediate. We further discuss this modification in the next section. We use a total of nine (9) series to experiment and present comparative results on the performance of the modified strategy: the Dow Jones index, the S%P500 index, six exchange traded funds (ETFs) and the EUR/USD exchange rate. Our results support the proposed modified strategy across all these series (on average and across different moving averages and different lengths of the moving averages) and show that considerable performance improvements can be effected to the standard cross-over rules.

The rest of the paper is organized as follows: in section 2 we present our methodology; in section 3 we discuss our data; in section 4 we have the main discussion of our empirical results while in section 5 and 6 we comment on a variety of secondary series; in section 7 we have a brief discussion on the choice of moving average type, length of the moving

average and other implementation issues; section 8 has some concluding remarks and prospects for further work. A total of 10 tables, discussed in the main text, are found at the end of the paper. Finally, there is an addendum to the paper that includes six additional tables with results which are not discussed in the main text.

#### 2. Methodology

#### 2.1 Trading strategies

Consider the (closing) price  $\{P_t\}_{t \in \mathbb{N}_+}$  of an asset and let  $M_t(k)$  denote the  $k^{th}$  period<sup>2</sup> backward moving average, that is:

$$M_t(k) \stackrel{\text{\tiny def}}{=} \frac{1}{k} \sum_{j=0}^{k-1} P_{t-j} \tag{1}$$

The moving average is one of the most frequently used indicators in trading strategies. Two of the easiest and most popular such strategies are based on a price cross-over and on moving averages cross-over. The first strategy issues a 'buy' signal when the price of the asset crosses above the moving average while the second strategy issues a 'buy' signal when a faster moving average crosses above a slower moving average; 'sell' signals are defined in the opposite direction. If the strategies are 'long only' ones then an 'exit' signal (usually reverting to a risk-free asset) is issued. We are going to be concerned with such 'long only' strategies so that the signals are binary.<sup>3</sup> The signal variable based on a price cross-over is defined as follows:

$$S_{t+\tau}^{P}(k) \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{cc} 1 & \text{while} & P_{t-1+\tau} \ge M_{t-1+\tau}(k) \\ 0 & \text{while} & P_{t-1+\tau} < M_{t-1+\tau}(k) \end{array} \right\}$$
(2)

for  $\tau = 0, 1, \ldots$ , where we note the one period transactiondelay in buying the asset - this is what will actually happen if one was implementing the strategy in real time.

Suppose that the first buy (or entry) signal is issued at time  $t_1$  and the first exit signal is issued after *s* periods at time  $t_1 + s$ . The total (cumulative) return of the strategy over this holding period is then given by:

$$TR_{t_1+s+1}^{P} \stackrel{\text{\tiny def}}{=} \left\{ \prod_{\tau=t_1+1}^{t_1+s+1} (1+R_{\tau}) \right\} - 1 \tag{3}$$

where  $R_{\tau} \stackrel{\text{def}}{=} P_{\tau}/P_{\tau-1} - 1$  is the percentage return for the  $\tau^{th}$  period. The total return of the strategy over a sequence of holding periods, for a sample of size *n*, is given by:

$$TR_n^P \stackrel{\text{\tiny def}}{=} \left\{ \prod_{\tau=t_1+1}^n (1+R_{\tau}^P) \right\} - 1 \tag{4}$$

<sup>&</sup>lt;sup>2</sup>Sometimes called the 'look-back' period.

<sup>&</sup>lt;sup>3</sup>It is straightforward to use all material that follows with sell signals as well but, as in Faber (2009), we assume that the investor exits the market and stays with a risk-free asset; in the present analysis we focus on the differential performance among strategies and we assume that the risk-free rate is zero.

where  $R_{\tau}^{P} \stackrel{\text{def}}{=} S_{\tau-1}(k)R_{\tau}$  is the sequence of the strategy's returns.

Similarly, we may define the signal variable for the moving averages cross-over as follows:

$$S_{t+\tau}^{M}(k_{1},k_{2}) \stackrel{\text{def}}{=} \left\{ \begin{array}{cc} 1 & \text{while} & M_{t-1+\tau}(k_{1}) \ge M_{t-1+\tau}(k_{2}) \\ 0 & \text{while} & M_{t-1+\tau}(k_{1}) < M_{t-1+\tau}(k_{2}) \end{array} \right\}$$
(5)

where  $\tau = 0, 1, ...$  and  $k_1 < k_2$ . The strategy's returns and total return are defined in an analogous fashion to the price cross-over case and we denote them by  $R_{\tau}^M$  and  $TR_n^M$  respectively.

Our modification<sup>4</sup> to the above strategies is very simple: in order to stay in the market (the initial 'buy' signal always being provided by a moving average strategy) we require that the current price is greater or equal than the convex combination of the entry price and the current price, which is equivalent to having the current price greater or equal than the entry price. While this appears exceedingly simplistic it does have an underlying intuition, a probabilistic justification and, as we will see, it works quite well in practice. This modification allows for improved entry and exit periods, compared to the plain moving average strategies, because it provides a well-defined local 'trendline' and 'confirmation' on market direction; in addition, as it will be seen, it acts as a dynamic stop loss.

To see the workings of this modification consider the following example. A moving average strategy, say  $S_t^P(k)$ , provides an entry signal at period  $t_i$  and we mark the entry price  $P_{t_i}$  and track the current price  $P_{t_i+\tau}$ , for  $\tau > 0$ . Now, at each point in time there is a probability of staying in the market  $P[S_{t_i+\tau}^P(k) = 1]$  and a corresponding probability of exiting the market  $P[S_{t_i+\tau}^P(k) = 0] = 1 - P[S_{t_i+\tau}^P(k) = 1]$ . Think of the "expected" price  $P_{t_i+\tau}^*$  at each period  $t_i + \tau$  as the convex combination, the straight line, that passes through the two price levels, that is:

$$P_{t_{i}+\tau}^{*} \stackrel{\text{def}}{=} \mathsf{P}\left[S_{t_{i}+\tau}^{P}(k) = 1\right] P_{t_{i}} + \left(1 - \mathsf{P}\left[S_{t_{i}+\tau}^{P}(k) = 1\right]\right) P_{t_{i}+\tau}$$
(6)

It is rather natural to require that the current price is at least as large as the "expected" price to stay into the market, i.e.  $P_{t_i+\tau} \ge P_{t_i+\tau}^*$  which is easily seen to boil down to a rule the requires  $P_{t_i+\tau} \ge P_{t_i}$ . Note that the use of probabilities is not really required, although they are more intuitive than an arbitrary convex combination of the current and the entry price. We immediately observe that the modified strategy will not necessarily use all the moving average signals but only those that will conform to the price inequality we just noted. Furthermore, it becomes a function of the different entry prices at times  $t_i$ , i.e., while being into a trade with our modified strategy the reference entry time and reference entry price may change. To formally state our approach we provide a definition of the entry times and the new signal variable. Using again the price cross-over strategy for illustration, we have:

$$t_i(k) \equiv t_i \stackrel{\text{def}}{=} \left\{ t \in \mathbb{N}_+ : S_{t_i}^P(k) > S_{t_i-1}^P(k) \right\}$$
(7)

for the definition of the moving average-based entry times and let  $t_{\ell} \stackrel{\text{def}}{=} \max_{i} t_{i}$  denote the latest entry time for all  $t_{i} \leq t$ . Then, the signal variable is defined as:

$$C_{t+\tau}^{P}(k,t_{\ell}) \stackrel{\text{\tiny def}}{=} \left\{ \begin{array}{cc} 1 & \text{while} & P_{t-1+\tau} \ge P_{t_{\ell}} \\ 0 & \text{while} & P_{t-1+\tau} < P_{t_{\ell}} \end{array} \right\}$$
(8)

for  $\tau = 0, 1, ...,$  and note that this modified signal becomes a function of the cross-over entry time  $t_{\ell}$  and entry price  $P_{t_{\ell}}$ . A similar expression applies to the case where instead of a price cross-over we have moving averages cross-over  $C_{t+\tau}^{M}(k,t_{\ell})$ . As with the plain cross-over signals a one-period delay applies for the modified signals as well. For future reference we denote the modified strategies' returns by  $R_{\tau}^{P,C} \stackrel{\text{def}}{=} C_{\tau-1}^{P}(k,\tau_{\ell})R_{\tau}$  and by  $R_{\tau}^{M,C} \stackrel{\text{def}}{=} C_{\tau-1}^{M}(k_{1},k_{2},\tau_{\ell})R_{\tau}$  and the total returns by  $TR_{n}^{P,C}$  and by  $TR_{n}^{M,C}$  respectively. We can now summarize the main aspects of our modified strategy, again using the price cross-over for illustration, as follows:

- 1. The initial entry time  $t_1$  is determined by the cross-over signal variable  $S_t^P(k)$ .
- 2. Once we enter into a trade the exit condition is determined by the modified signal variable  $C_t^P(k,t_\ell)$  and not the cross-over signal variable  $S_t^P(k)$ .
- 3. During the duration of a trade the reference entry time and reference entry price will change if the cross-over signal variable issues an exit signal and later an entry signal *while the modified signal variable does note change*. This makes the latest entry price  $P_{t_{\ell}}$  to act as a dynamic trailing stop.
- The modified strategy's entry and exit times do not coincide with the cross-over strategy's entry and exit times.

Why would one expect, a priori, this modified strategy to work? As the new signal variable depends on a price distance, we can actually provide a probabilistic explanation under the assumption that prices follow a (symmetric) random walk. Although the assumptions of a random walk, particularly the one of independent increments and constant volatility, are known not to hold it is still instructive to use the random walk model since we have available results on the probability of exiting from the modified strategy, i.e. on  $p_t(\tau) \stackrel{\text{\tiny def}}{=} \mathsf{P}\left[C^P_{t+\tau}(k,t_\ell) = 0 \land C^P_t(k,t_\ell) = 1\right] \text{ for } \tau > 0 \text{ and for }$ fixed  $t_{\ell}$ . This probability corresponds to the event of a 'return to the origin' in random walk parlance and its probabilistic behaviour is well known. In fact, we are particularly interested in the probability of the 'first passage to the origin' after  $\tau$ -periods we are in a trade (thus the fixed  $t_{\ell}$  - this is so since the random walk's origin does not matter insofar it is fixed).

<sup>&</sup>lt;sup>4</sup>In what follows we will call the price and moving average cross-overs 'standard' strategies while we will call them 'modified' strategies when they incorporate they changes that we propose below.

Under these assumptions for the random walk it is known (for details see Feller [1957, 1966], vol.1, chs. 3, 13 and 14) that the probability of a 'first passage to the origin' declines exponential as  $\tau$  increases<sup>5</sup>. The probability of an immediate first passage is  $p_t(2) = 50\%$  (because of the symmetry assumption) which declines to about  $p_t(10) = 2.8\%$  in 10 periods and to about  $p_t(20) = 0.94\%$  in 20 periods. If the random walk is not symmetric then these probabilities change. However, it is interesting to note that even when the odds are against a price increase the probabilities still decline exponentially albeit they start from higher levels: that is, if the trade is not terminated soon then it will probably continue. For example, if the odds of a negative return each period are 30% then the probability of an immediate first passage is  $p_t(2) = 70\%$ which declines to  $p_t(10) = 2.70\%$  in 10 periods and to about  $p_t(20) = 0.60\%$  in 20 periods. Therefore, irrespective of the odds structure, the probability of exiting a successful trade declines as  $\tau$  increases but for fixed  $t_{\ell}$  only; when the reference entry time and price change the 'origin' changes again and the probabilities 'reset'. It is in this sense that the proposed strategy has  $P_{t_{\ell}}$  acting as a dynamic trailing stop.

#### 2.2 Strategy evaluation

To evaluate our proposed modification on the moving average trading rules we use a variety of averages, as used by practitioners and trading platforms, as well as a number of practical trading evaluation measures. Besides the plain moving average we also employ the exponential moving average and the weighted moving average.<sup>6</sup> For all of these averages we used a number of combinations for k and  $(k_1, k_2)$  conforming to the most popular choices for daily data: 5, 20, 50, 100 and 200period averages were used. Specifically, the following pairs  $(k_1, k_2)$  were considered: (5,20), (10,20), (20,50), (20,100) and (50,200) - the more relevant of those being the last three pairs which we discuss more extensively. To perform our exercise in a real-time fashion we split the sample into two parts  $n_0 + n_1 = n$ , where  $n_1$  is the evaluation period - we use a variety of evaluation periods (see discussion of data and results) to account for different market periods. For each of the averages and for of the four strategies (price cross-over, modified price cross-over, moving averages cross-over and modified moving averages cross-over) we compute the following evaluation measures ( $R_t^s$  denotes the returns of any of the four strategies):

• The total return, as in equation(4),

$$TR^{s} \stackrel{\text{\tiny def}}{=} \left\{ \prod_{\tau=t_{1}^{s}+1}^{n} (1+R_{\tau}^{s}) \right\} - 1.$$

• The average return  $AR^s \stackrel{\text{def}}{=} \frac{1}{N_s} \sum_{t=n_s}^n R_t^s$ , where  $t_1^s$  denotes

the first trading period for the  $s^{th}$  strategy,  $n_s \stackrel{\text{def}}{=} n_0 + t_1^s + 1$  denotes the first evaluation period and  $N_s \stackrel{\text{def}}{=} n - n_s + 1$  denotes the evaluation observations. The average return is reported annualized.

- The standard deviation of the return  $SD^s \stackrel{\text{def}}{=} \sqrt{\frac{1}{N_s} \sum_{t=n_s}^n (R_t^s AR^s)^2}$ , annualized.
- The Sharpe ratio  $SR^s \stackrel{\text{def}}{=} \bar{R}^s / \sigma_s$ , annualized.
- The maximum drawdown  $MD^s$ . Let  $TR_t^s$  denote the running total return of a strategy up to time  $t > n_s$  and let  $\mathcal{M}_t^s \stackrel{\text{def}}{=} \max TR_t^s$  denote the running maximum return.
  - Then the maximum drawdown is defined as  $MD^s \stackrel{\text{def}}{=} \frac{1 + \mathcal{M}_t^s}{1 + TR_t^s} 1.$
- The maximum drawdown duration, denoted *MDD<sup>s</sup>*.

We choose as our benchmark the standard moving average strategies as detailed above and we report the above measures as differences with respect to that benchmark. So, again using the price cross-over strategy, s = P, as an illustration, the final statistics are given in a form like:

- 1. The difference in total returns  $TR \stackrel{\text{\tiny def}}{=} TR^{P,C} TR^{P}$ .
- 2. The difference in average returns  $AR \stackrel{\text{\tiny def}}{=} AR^{P,C} AR^{P}$ .
- 3. The difference in standard deviations  $SD \stackrel{\text{def}}{=} SD^{P,C} SD^{P}$ .
- 4. The difference in the Sharpe ratios  $SR \stackrel{\text{def}}{=} SR^{P,C} SR^{P}$ .
- 5. The difference in maximum drawdowns  $MD \stackrel{\text{def}}{=} MD^{P,C} MD^{P}$ .
- 6. The difference in maximum drawdown durations  $MDD \stackrel{\text{def}}{=} MDD^{P,C} MDD^{P}$ .

and similarly for s = M. Detailed results are also available on the comparative performance of these strategies with respect to the buy & hold strategy and we comment on their differences in the coming discussion. However, our main focus is to compare two active strategies and not an active versus a passive strategy.

#### 3. Data

We apply the methodology described in the previous section to representative series from two asset classes. First, for equities, we use two long data sets for the Dow Jones (DJIA) and the S&P500 (SP500) indices and six series of exchange traded funds (ETFs). Second, we use the EUR/USD foreign exchange rate. Our choice of data series is based (mostly) on data availability, 'popularity' and a combination of high

<sup>&</sup>lt;sup>5</sup>This probability is the same as the probability of a 'first return to the origin' but the latter does not require a positive price distance for all  $\tau$  prior to the return.

<sup>&</sup>lt;sup>6</sup>Results also available on request (or online) for the modified exponential moving average of J. Wells Wilder (1978), the originator of the relative strength index (RSI) of technical analysis.

volume and liquidity and low transaction costs in their trading. For the DJIA and the SP500, which are not directly tradable, the analysis can be thought of in terms of 'market timing' as in Faber (2009).<sup>7</sup> Investors' interest in ETFs has been increasing rapidly during the last decade. Today more than a thousand ETFs exist in the market and are traded on a daily basis. ETFs combine stock and mutual fund characteristics have lower costs than mutual funds and all their component information (and not just the top holdings) is publicly available. Finally, the EUR/USD exchange rate is of prime interest to currency traders worldwide and its modeling is especially relevant during these turbulent times. As for the ETFs that we use they are the following: the ETF that tracks the SP500 (SPY); the ETF for the NASDAQ index (QQQQ); an ETF for the financial services sector (XLF); another for the energy sector (XLE); an ETF for the Japanese equity market (EWJ) and finally one for the U.S. real estate market (IYR). These series are among the ones with the longest history of data. Additional results on a number of other ETFs are available on request (or online).<sup>8</sup>

Data on the two indices and ETFs are from the Yahoo! Finance website. For the DJIA and the SP500 we use the longest records available, from 1928 and 1950 respectively the corresponding sample observations are 20826 days for the DJIA (ending in 02/09/2011) and 15519 days for the SP500 (ending in 02/09/2011 as well). For the ETFs we aligned all series to start with the inception of the euro at 01/04/1999 (except IYR that starts in 2000), for a total of 2986 days ending in 12/11/2010. The data for the EUR/USD exchange rate were publicly available from the FRED database of the Federal Reserve Bank of St Louis, from 01/03/2000 until 04/13/2011 for a total of 2943 observations. Figures 1 through 4 has a visual presentation of our data series.

As mentioned in the methodology section, in evaluating our trading strategies we split our sample into training and evaluation periods and let the sample roll forward based on the length of the largest moving average. We have selected different splitting dates so as to provide results that are (as much as possible) free from bias due to the starting date of the evaluation period. We have selected several splitting dates so as to include periods of different characteristics, such as rising and falling prices, and we summarize them in the Table A.

#### 4. Discussion of results

To contain the size of the discussion we will focus on the three pairs  $(k_1, k_2)$  of (20,50), (20,100) and (50,200) for the indices and the ETFs and on (5,20), (10,20) and (20,50) for

the EUR/USD exchange rate. We will also discuss the performance of (a) the largest evaluation period (S1) for all series, (b) the next to the smallest evaluation period (S3) for the ETF series and the smallest evaluation period (S4) for the indices and the exchange rate series and (c) the average performance across all evaluation periods (not just those in (a) and (b)).<sup>9</sup> The selection of these sample splits is based on sample size considerations (as in S1) and on having a period that exhibits at least part of cycle (trough & peak as in S3 and S4). The complete set of our results, including the averages that are discussed below, is fully available in electronic form for the interested reader from our website (http://www.quantf.com).

#### 4.1 Results on DJIA and S&P500

We begin our discussion with the results on the longest series of DJIA which are given in Table 1. The table, as all the ones that follow, has three panels one for each of the evaluation periods mentioned before. Starting with the results for the longest evaluation period (S1) we see that, in terms of the total return difference TR, the proposed modified strategy is better 89%of the time, across all cross-over strategies and  $(k_1, k_2)$  combinations, with an average gain<sup>10</sup> over the standard strategies of 2900% (while the average total return among all strategies, and not just those that our modified strategies are better, is 2400%). These numbers are not unreasonable nor 'alarming': they simply reflect the fact that, over the long run of 80 years that we examine, the index has been steadily rising until 2000 and the current price would almost always be greater than the updated entry price. This is precisely the effect associated to the 'return to the origin' and the probability of long leads in a random walk context. As we will see immediately below for shorter evaluation periods the numbers are correspondingly smaller.

Among the price cross-over strategies the best performers are the modified 50-day weighted moving average with a gain of 4100% and the modified 50-day moving average with a gain of 3200%, while among the moving average cross-overs the best performers are the modified (20,50)-days weighted moving average and the modified (20,100)-days simple moving average with gains of 9100% and 9000% respectively. Here, and in many cases for other series, we find that the moving average cross-over strategies are better than the price cross-over ones. Furthermore, we see that the popular look-back choices

<sup>&</sup>lt;sup>7</sup>We also have results available for London's FTSE, NASDAQ 100, Nikkei 225 and DAX. The results on FTSE, NIKKEI and DAX are tabulated in the addendum to the paper as well.

<sup>&</sup>lt;sup>8</sup>Among the ETFs examined but not reported on here we have an ETF for oil (OIH), for emerging markets (EEM), for gold (GLD) and for retail sales (XRT). Among the exchange rates examined we have the USD/JPY, USD/CHF, GBP/USD, EUR/GBP, EUR/JPY and EUR/CHF. The results from the analysis of these series are fully available online. In the addendum to the paper we have tabulated the results from USD/JPY and EUR/CHF.

<sup>&</sup>lt;sup>9</sup>In the next subsections we are interested on average performance across strategies and evaluation periods; see section 7 on additional discussion on results for strategy usage and comparisons among price cross-overs and moving average cross-overs.

<sup>&</sup>lt;sup>10</sup>These, and the other average differences that are discussed below are computed as follows: for each of the panels in Table 1 let  $s_{ij}$  denote the cell value for strategy *i* and evaluation measure *j* (for example  $i = MA_1$  the simple price cross-over based on  $k_1$  and j = TR be the total return. For each evaluation measure there are 3  $(k_1, k_2)$  combinations and 9 average types for a total of 27 cell entries. Then, the average difference among the winning strategies is  $\frac{1}{27}\sum_{\forall (k_1,k_2)}\sum_{\forall i}s_{ij} \cdot I_{ij}$  where  $I_{ij} \stackrel{\text{def}}{=} I(s_{ij} > 0)$  for j = TR, AR, SD, SR and  $I_{ij} \stackrel{\text{def}}{=} I(s_{ij} < 0)$  for j = MD, MDD. The average difference among all strategies is  $\frac{1}{27}\sum_{\forall (k_1,k_2)}\sum_{\forall i}s_{ij}$ . The same applies to all tables in the sequel.

of 20, 50, 100 and 200 days work the best over these 80 years of data. It is interesting that while the difference in total return is quite substantial we do not find any difference in terms of the average return: the average annualized return AR gain is the same across winning strategies and across all strategies and equals to 1%. On the other hand, the risk-reward trade-off is much better with the use of the modified strategies: 74% of the time the modified strategies have larger Sharpe ratios, with an average gain of 12% for the winning strategies and of 8% or all strategies. Based on these criteria the average performance of the proposed modified strategy is better than that of the standard cross-over rules. However, even more important is the fact that the modified strategy exhibits lower maximum drawdown and lower drawdown duration: (35%) of the time the modified strategies have lower maximum drawdown with an average gain of -20% although the maximum drawdown is larger (at 42%) across all strategies. For the maximum drawdown duration we have that 60% of the time the modified strategies have lower duration with corresponding averages of -578 and -136 days: with the modified strategies an investor will emerge from a price slump more than a year earlier, on average, than by using the standard cross-over strategies. These results are, of course, conditioned to the choice of moving average and the choice of the look-back parameters  $(k_1, k_2)$ . They do not imply that the modified strategies will always be better but on average an investor will be much better off using the modified strategies rather than the standard ones.

We next turn to the results from the smallest evaluation sample (S4), the one that includes the last 20 years that contain a full cycle (trough to trough) of two bull and bear markets. This is an important evaluation period for momentum-based strategies such as the ones we are considering. The results, in the second panel of Table 1, are extremely encouraging: for the difference in total return we find that 81% of the time the modified strategies are better than the standard ones with an average gain of 19% across these winning strategies (and 14%) across all strategies). So we again find that the cumulative worth for an investor is on average higher when using the modified strategies, even during a crisis-and-recovery period. Among the price cross-over strategies the best performers are the modified 200-day exponential moving average with a gain of 43% and the modified 50-day exponential moving average with a gain of 32%, while among the moving average cross-over strategies the best performers are the modified (20,50)-days and (20,100)-days simple moving averages with gains of 35% and 22% respectively. For the Sharpe ratio we find that the modified strategies are also better 78% of the time with an average gain to risk-reward trade-off of 19% (among the winning strategies) and 13% (among all strategies); these averages are actually better than the ones for the largest evaluation period discussed above and this could be interpreted as a sign of certain 'robustness' for the proposed modification. Furthermore, the performance based on maximum drawdown and its duration is also better than before: based on maximum drawdown the modified strategies were

better 57% of the time with an average gain of -14% across the winning strategies while the average gain was 1% across all strategies. The results are even more encouraging for the maximum drawdown duration, where 85% of the time the modified strategies have smaller duration with an average of -352 days, while the overall average duration is again better at -313 days. We see that the performance of the new approach is indeed robust and shows to be more profitable than the standard cross-over strategies in a period where there were many 'breaks' in the main market trend.

A similar picture emerges if we look at the average performance across evaluation periods, in the third panel of Table 1. Here, we again have that 89% of the time the modified strategies outperform the standard ones in terms of the difference in total return, with an average gain of 637% and 795%, across the winning and all strategies respectively. The Sharpe ratio, maximum drawdown and drawdown duration exhibit equally good performance as in the previously two examined evaluation periods.

It is quite interesting to compare the above results with those on S&P500, which are presented in Table 2. The reader will immediately notice the smaller numbers due to the smaller evaluation period, compared to that of the DJIA. In the first panel of Table 2 we see that, in terms of the total return difference TR, the proposed modified strategy is better 70% of the time with an average gain of 1600% (while the average total return among all strategies is 650%). Among the price crossover strategies the best performers are the modified 20-day weighted moving average with a gain of 1000% and the modified 20-day moving average with a gain of 1000% as well, while among the moving average cross-overs the best performers are the modified (20,50) and (20,100)-days simple moving average (as in the case of the DJIA) with gains of 4800% and 4200% respectively. The modified strategies are also better in terms of their Sharpe ratios: 70% of the time they are better with average gains of 13% (across the winning strategies) and 6% (across all strategies) respectively. The modified strategies exhibits consistently lower maximum drawdown and lower drawdown duration: the average drawdown gain is -33% for the winning strategies, with duration gains of -382 days, while the corresponding gains across all strategies are -4% and -39 days, still quite substantial improvements over the standard strategies.

Turning next to the results on the smallest evaluation period (S4), which is directly comparable to the DJIA, we see improved performance as well. The results, in the second panel of Table 2, are again extremely encouraging: for the difference in total return we find that 70% of the time the modified strategies are better than the standard ones with an average gain of 24% across these winning strategies (and 10% across all strategies). Among the price cross-over strategies the best performers are the modified 50-day weighted moving average with a gain of 35% and the modified 20-day exponential moving average with a gain of 28%, while among the moving average cross-over strategies the best performers are the modified (20,100)-days exponential moving average and (20,100)-days weighted moving average with gains of 72% and 64% respectively. For the Sharpe ratio we find that the modified strategies are better 70% of the time with an average gain to risk-reward trade-off of 22% (among the winning strategies) and 10% (among all strategies); these averages are again better than the ones for the largest evaluation period. Furthermore, the performance based on maximum drawdown and its duration is also better than before: based on maximum drawdown the modified strategies were better 67% of the time with an average gain of -18% across the winning strategies while the average gain was -7% across all strategies. The results for the maximum drawdown duration, where 63% of the time the modified strategies had smaller duration, are also very good with an average gain in duration of -460 days, while the overall average duration is again better at -131 days. All in all, the results on these major US indices over two different time spans show that the proposed modification can produce substantial gains in terms of both higher return and lower risk for an active investor. The robustness of these findings is further examined in the discussion on the ETFs that follows. As in the case of the DJIA, the performance results for the average across evaluation periods in the third panel of Table 2 continue to support the modified strategy.

#### 4.2 Results on SPY

In Table 3 we present results from the strategy evaluation statistics for SPY. Starting with the results for the longest evaluation period (S1) we see that, in terms of the total return difference TR, the proposed modified strategy is better 74% of the time, across all cross-over strategies and  $(k_1, k_2)$ combinations, with an average gain of 38% (while the average total return among all strategies, and not just those that our modified strategies are better, is 24%). Among the price cross-over strategies the best performer is the modified 20-day exponential moving average with a gain of 59% while among the moving average cross-overs the best performers are the modified (20,50) moving average and the (50,200) weighted moving average with gains of 62% and 66% respectively. The average annualized return AR gain for the is 4% for those cases that our modified strategies are better, compared to 2% for all strategies. The related numbers for the standard deviation and Sharpe ratio differences are less than 1% (standard deviation) and 28% and 16% respectively (Sharpe ratio); while the modified strategies have slightly higher risk we see that in terms of the risk-reward they are again better than the standard ones. Based on these criteria the average performance of the proposed modified strategy is better than that of the standard cross-over rules. However, even more important is the fact that the modified strategy exhibits lower maximum drawdown and lower drawdown duration: 67% of the time the modified strategies have lower maximum drawdown with an average gain of -15% (while the average gain across all strategies is still -4%). For the maximum drawdown duration we have that 78% o the time the modified strategies have lower duration

with corresponding averages of -146 and -66 days.<sup>11</sup>

We next turn to the results from the next to the smallest evaluation sample (S3), the one that includes the trough during the recent financial crisis for  $n_1 = 787$  days. This is an important evaluation period for momentum-based strategies such as the ones we are considering. The results, in the second panel of Table 3, are extremely encouraging: for the difference in total return we find that 67% of the time the modified strategies are better than the standard ones with an average gain of 13% across these winning strategies (5% across all strategies). So we again find that the cumulative worth for an investor is on average higher when using the modified strategies, even during a crisis-and-recovery period. For the Sharpe ratio we find that the modified strategies are better 67% of the time with an average gain to risk-reward trade-off of 40% (among the winning strategies) and 18% (among all strategies); these averages are actually better than the ones for the largest evaluation period discussed above and this could be interpreted as a sign of certain 'robustness' for the proposed modification. However, since one cannot have everything, the performance on maximum drawdown and maximum drawdown duration is not as good as before (it would be a big surprise if it was, there was a crisis after all) but still quite reputable: based on maximum drawdown the modified strategies were better slightly more than half of the time at 56% with an average gain of -12% across the winning strategies while the average gain was just -1% across all strategies. The results are more encouraging to the maximum drawdown duration, where 78% of the time the modified strategies have smaller duration with an average of -81 days, while the overall average duration is again better at -31 days. We see that the performance of the new approach is indeed robust and shows to be more profitable than the standard cross-over strategies.<sup>12</sup>

Finally, if we look at the performance across all evaluation samples, in the third panel of Table 3, we get results that are similar to the ones presented above. For the difference in total return we find that 89% of the time the modified strategies are better with an average gain of 22% (across the winning strategies) and of 18% (across all strategies) respectively with similar results for the difference in the average return, standard deviation and Sharpe ratio. For the difference in maximum drawdown and its duration we find that 59% of the time the modified strategies have lower maximum drawdown with an average gain of -10% (across the winning strategies) and of -2% across all strategies. All in all, the results for SPY are also extremely encouraging, complementing the results on the DJIA and the S&P500 indices, as they indicate that

<sup>&</sup>lt;sup>11</sup>It is important to emphasize that the modified strategies are also better, on average, than the buy & hold strategy: for the results in the first panel of Table 3 we have that 56% of the time the modified strategies were better than buy & hold with an average gain (in excess of buy & hold) in total return of 44% (across the winning strategies) and of 10% (across all strategies).

 $<sup>^{12}</sup>$ Again, the modified strategies were also better, on average, than the buy & hold strategy for this evaluation period as well however the corresponding values were lower: 41% of the time the modified strategies were better than buy & hold with an average gain in total return of 27% across the winning strategies and a loss of -9% across all strategies.

the modification proposed in equation (8) appears to indeed improve the standard price and moving average cross-over trading rules.

#### 5. Results on the other ETFs

The results across the other five ETFs we examined are also quite supportive of our modified strategy, although they do not have a uniform performance for our choice of look-back parameters for the moving averages. In Table 4 we present the results for QQQQ which are considerably better than those of SPY, for  $n_1 = 2297$  days and for the average across evaluation periods (first and third panel of the table respectively) while they have similar performance to SPY for the evaluation period that include the crisis with  $n_1 = 787$  days. For example, for the longest evaluation period the modified strategies are almost always better than the standard ones in terms of total return and have considerably smaller drawdown durations, compared to SPY. The same applies when we look at the third panel for the average performance across evaluation periods. In Table 5 where we present the results for XLF the performance of the modified strategies is at or below 50, in terms of the percentage of times that they outperformed the standard ones. In Table 6 where we present the results for XLE the performance is much better than XLF, for both the largest evaluation sample and across evaluation samples, and for the latter sample is also on par with the results on SPY. In Table 7 where we present the results for EWJ we have that are slightly better than those of XLF but not as good as for SPY, QQQQ and XLE. Finally, the last series for real estate IYR gets some extra attention: this is because it has very good performance during the evaluation period that include the crisis events. Looking at Table 8, in terms of the difference in total return the modified strategies are better 89% of the time with average gains of 49% (across the winning strategies) and 42% (across all strategies) respectively, with very good risk-reward performance(see Sharpe ratios) and maximum drawdowns that are on par with the standard strategies. It is interesting to note that for the other two evaluation periods, i.e. the largest one and the average across all evaluation periods, the modified strategies have better total return and risk-reward performance but larger drawdown durations (by three and on month respectively) across all strategies. For example, from the first panel in Table 8 we can see that even if the modified strategies are better only 52% of the time the average gain is 66% (across the winning strategies) and 13% (across all strategies) respectively. Whether this extra 13% per year is worth waiting 3 more months in a drawdown is a trade-off that is best assessed by the individual investor and user of these strategies.

#### 6. Results on EUR/USD exchange rate

For the results on the EUR/USD exchange rate we concentrate on faster look-back periods of  $(k_1, k_2)$  equal to (5,20), (10,20) and (20,50) days (with all other cases available as well). The

nature of the foreign exchange market, with trading taking place around the clock and more 'aggressive' investors, is such that it allows for higher profitability in shorter horizons. To provide a flavour of the method in a different set of moving average parameters we have in Table 9 the results from these shorter look-back periods. The overall performance is again very good, in-between SPY and QQQQ in terms of the actual numbers. Looking at the first panel of Table 7 we see that, in terms of the total return difference TR, modified strategy is better 78% of the time with an average gain of 25% (across all winning strategies) and of 18% (across all strategies) respectively. Among the price cross-over strategies the best performer is the modified 10-day weighted moving average with a gain of 69% (the 20-day moving average is second best with a gain of 35%) while among the moving average cross-overs the best performers are the modified (5,20) moving average and the (10,20) weighted moving average with gains of 55% and 37% respectively. In terms of the risk-reward the modified strategies are better 70% of the time with average Sharpe ratio gains over the standard ones of 25% (across the winning strategies) and 14% (across all strategies) respectively. Turning to the maximum drawdown and its duration we see something quite interesting: while in terms of drawdown the modified and standard strategies are basically on par in terms of drawdown duration the modified strategies easily outperfm the standard ones buy over -100 days. The results across all evaluation periods are qualitatively similar to what we just discussed, as can be see from the third panel of Table 7.

Finally, when we look at the results on the second panel of the table for the period starting from March 2009 we see some interesting results as well. Here, 67% of the time the modified strategies have better total return and Sharpe ratio compared to the standard ones. However, the gains are small for total return and large for Sharpe ratio (in fact, the risk-reward gains are the highest among those presented in Table 7). Across all strategies the gain in total return is just 2% but the gain in the Sharpe ratio is 25%, the latter rising to 63% among the winning strategies. Note that the average maximum drawdown duration among all strategies is essentially 'destroyed' by a single strategy (exponential moving average cross-over) since in 70% of the time the modified strategies have smaller duration than the standard ones.

### 7. Further results and discussion on strategy usage

Of interest is to examine a number of additional issues with the use of the proposed methodology. First, which one of the two types of cross-overs - price or moving averages - performs best on average? Focusing on the set of results for the two indices and the six ETFs<sup>13</sup> we find the moving average crossovers are better performers (in terms of difference in total

 $<sup>^{13}\</sup>mbox{The}$  discussion on cross-over type performance relates to the results of Tables 1 through 8.

return) than the price cross-overs 54% of the time. For the two indices alone the percentage of outperformance rises to 78% while for the six ETFs alone drops to 46%. Notable exceptions are the results on QQQQ where the price cross-over strategy always produces better results (but not by a wide margin).

Second, which of the types of moving averages used (plain, weighted and exponential) appears as a top performer most of the time? Again focusing on the difference in total return, we find that for the price cross-over strategies the plain moving average is top performer 26% of the time, the weighted moving average 34% of the time and the exponential moving average 40% of the tie; the corresponding percentages for the moving average cross-over strategy are 32%, 40% and 28%. If we look at just the two indices, DJIA and S&P500, we find that for the price cross-over strategy the weighted moving average is best 56% of the time and the exponential moving average is best 44% of the time; for the moving average crossover strategy the plain moving average is best 16% of the time, the weighted moving average 28% of the time and the exponential moving average 56% of the time. Finally, if we look only at the ETFs these numbers are 35% for the plain moving average, 26% for the weighted moving average and 39% for the exponential moving average (price cross-over) and correspondingly 37%, 44% and 19% (moving average cross-over). One cannot easily draw a generic conclusion as to which type of moving average works best with the modified strategy but the weighted and exponential moving averages appear to be safer bets to use than the plain moving average. For the two indices, where the moving average cross-over strategy is better 78% of the time, we do get however a clear indication that the exponential moving average works best most of the time.

Third, for the price cross-over strategy, what is the average and median look-back period for the top performers? We find that the average (median) length of the moving average is 62 (20) days, across all series, 70 (35) days across the ETFs and 36 (20) days for the two indices. Since we have concentrated on fixed look-back periods the median values are here more appropriate and the results do support the use of the 20-day look-back period in use with the price cross-over strategy.

An important practical issue on any strategy relates to the number of trades, as these affect the transaction costs. Since the proposed modification acts as a dynamic trailing stop we expect a possibly increased number of trades compared to the standard strategy, although it turns out that this highly data specific. We present our results in Table 10, in the same form as in previous tables, i.e. as differences with respect to the trades of the standard strategy - and we discuss the same types of averages across the tables cells as before. We start off by discussing the results for the largest evaluation period. For the EUR/USD exchange rate we actually have 4 less trades than the standard strategy, on average, with 55% of the time having less rather than more trades. For the two indices we find that the average number of extra trades is 103 for the DJIA and 77 for the S&P500, that correspond to less than 0.5% of the days of their evaluation samples. For the six ETFs the average number of extra trades ranges from 9 (for IYR) to 20 (for EWJ) with SPY having 12 extra trades, on average. These extra trades correspond to less than 1% of the days in the evaluation sample. If we next look at the number of trades for the smaller evaluation periods we find that, on average, there are no more trades for EUR/USD compared to the standard strategy. For this exchange rate series (and for the chosen look-back periods) the strategy appears that can be used safely and successfully. For the other series we have results similar to the larger evaluation period: the average number of extra trades is 22 for the DJIA and 40 for the S&P500, that correspond to less than 1% of the days of their evaluation samples. For the six ETFs the average number of extra trades now ranges from 3 (for SPY) to 11 (for EWJ). These extra trades again correspond to less than 1% of the days in the evaluation sample. These results are in line with our previous findings: it appears that the smaller drawdowns and the smaller duration may be attributable (in part) to the timing of these extra trades (for the equity series) or the decreased trades (for the exchange rate series).

The effect of these extra trades on total return is, of course, negative but it should not affect our results considerably - the final effect depends on the strategy and its performance and rests with the investor's trade-off with respect to increased gains & lower drawdowns vs. increased number of trades. Finally, it is interesting to note from Table 10 that the 20 and 50-day weighted moving average and the 20 and 50-day exponential moving averages with price cross-over as well as the exponential moving averages cross-over strategies have consistently less number of trades across most strategies for equities. This result has some practical significance, given our previous discussion with respect to the moving average types and their look-back periods, as it does suggest that their use in the modified strategy would give the 'best' all around performance.

#### 8. Concluding remarks

In this paper we present a modification to, the widely used, price and moving average cross-over trading strategies. The modification is based on an updated threshold value which is defined by the 'buy' signal of the standard cross-over strategy and acts as a dynamic trailing stop. This implies a different behavior and performance for the modified strategy compared to the standard one and we find that, on average, the modification improves trading performance by a wide margin across a number of evaluation measures. More importantly, besides increasing the cumulative return of an investor it does so without increasing the risk-reward ratio: the modified strategy exhibits, on average, smaller maximum drawdown and smaller drawdown duration. As noted in Faber (2009) these quantities are important to the investor: large drawdowns are catastrophic since they wipe out a large part of the invested capital making it difficult, if not impossible, for someone to

return to the markets.

Our analysis is evaluated in a total of nine series: the DJIA and S&P500 for a long-run period of 80 and 60 years respectively; six ETFs and the EUR/USD exchange rate for over 10 years. Our results show that, across moving average types, look-back periods and cross-over types, the modified strategy works very well and, on average, outperforms both the standard strategy and the buy & hold strategy, sometimes very substantially. Many additional results, for other series, are available online for the interested reader.

An important aspect of our on-going work is to examine in more detail the performance of the proposed modification, particularly across yet different evaluation periods, and to understand further and better the underlying reasons for which it appears to work. In particular, further study is required on the properties of the returns generated by the modified strategy, on additional results in foreign exchange markets and on the timing and quality of its trading signals. We are pursuing them in current work.

#### References

- W. Brock, J. Lakonishok and B. LeBaron (1992): "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns", *The Journal of Finance*, vol. 47, pp. 1731-1764.
- 2. R. G. Brown (1963): Smoothing, Forecasting and Prediction of Discrete Time Series, Prentice-Hall.
- 3. D. Brown and R. Jennings (1989): "On Technical Analysis", *Review of Financial Studies*, vol. 2, pp. 527–551.
- C. Chiarella, X.Z. Hea, and C. Hommes (2006): "A Dynamic Analysis of Moving Average Rules", *Journal* of Economic Dynamics and Control, vol. 30, pp. 1729-1753.
- 5. M. Faber (2009): "A Quantitative Approach to Tactical Asset Allocation", update on SSRN, previously published in 2007 at the *Journal of Wealth Management*.
- 6. W. Feller (1957): *An Introduction to Probability Theory and Its Applications*, vol. 1, 2nd edition, John Wiley.
- 7. W. Feller (1966): *An Introduction to Probability Theory and Its Applications*, vol. 2, John Wiley.
- G. Friesen, P. Weller and L. Dunham (2009): "Price Trends and Patterns in Technical Analysis: A Theoretical and Empirical Examination", *Journal of Banking and Finance*, vol. 33, pp. 1089-1100.
- R. Harris and F. Yilmaz (2009): "A Momentum Trading Strategy based on the Low Frequency Component of the Exchange Rate", *Journal of Banking and Finance*, vol. 33, pp. 1575-1585.
- R. Hodrick and E. Prescott (1997): "Post-war US Business Cycles: An Empirical Investigation", *Journal of Money, Credit and Banking*, vol. 29, pp. 1–16.
- B. LeBaron (1999): "Technical Trading Rule Profitability and Foreign Exchange Intervention", *Journal of International Economics*, vol. 49, pp. 125–143.
- A. Lo, H. Mamaysky and J. Wang (2000): "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation", *The Journal of Finance*, vol. 55, pp. 1705-1765.
- C. J., Neely (1997): "Technical Analysis in the Foreign Exchange Market: A Layman's Guide", *Review September/October 1997*, Federal Bank of St. Louis, 23-38.
- 14. C. J., Neely and P. A., Weller (2011): "Technical Analysis in the Foreign Exchange Market", *Working Paper*, Federal Reserve of St. Louis.

- 15. J., Nicolau (2007): "A Discrete and a Continuous-time Model Based on a Technical Trading Rule", *Journal of Financial Econometrics*, vol. 5, pp. 266-284.
- J. Okunev and D. White (2003): "Do Momentum-Based Strategies Still Work in Foreign Currency Markets?", *Journal of Financial and Quantitative Analysis*, vol. 38, pp. 425-447.
- Y., Zhu and G., Zhou (2009): "Technical Analysis: An Asset Allocation Perspective on the Use of Moving Averages", *Journal of Financial Economics*, vol. 92, pp. 519-544.

|            | Т          | able A. D | ata sample sp | lits as st | rategy evaluat | tion per | iods       |       |
|------------|------------|-----------|---------------|------------|----------------|----------|------------|-------|
|            | DJIA       |           | SP500         |            | ETF            |          | EUR/US     | SD    |
|            | Date       | $n_1$     | Date          | $n_1$      | Date           | $n_1$    | Date       | $n_1$ |
| <b>S</b> 1 | 08/01/1929 | 20618     | 11/01/1950    | 15310      | 10/01/2001     | 2297     | 06/21/2001 | 2558  |
| S2         | 01/02/1970 | 10519     | 01/02/1970    | 10519      | 03/03/2003     | 1941     | 11/25/2002 | 2187  |
| <b>S</b> 3 | 01/02/1990 | 5465      | 01/02/1990    | 5645       | 10/01/2007     | 787      | 02/03/2006 | 1353  |
| S4         | 01/03/2000 | 2937      | 01/03/2000    | 2937       | 02/03/2009     | 431      | 03/19/2009 | 539   |

9. Figures & Tables

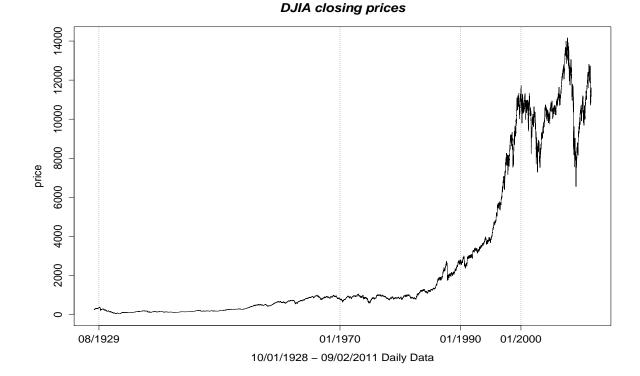



Figure 1. DJIA data series and evaluation sample splits

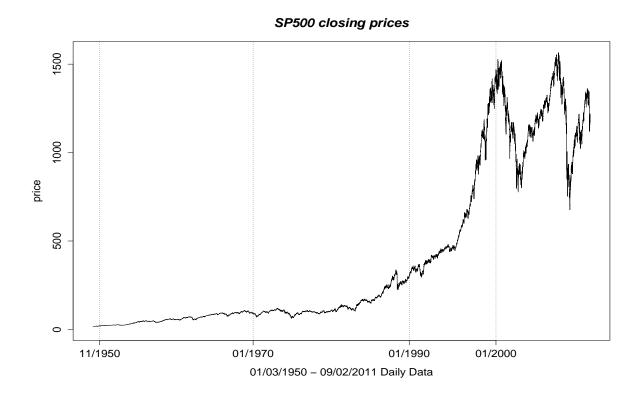



Figure 2. SP500 data series and evaluation sample splits

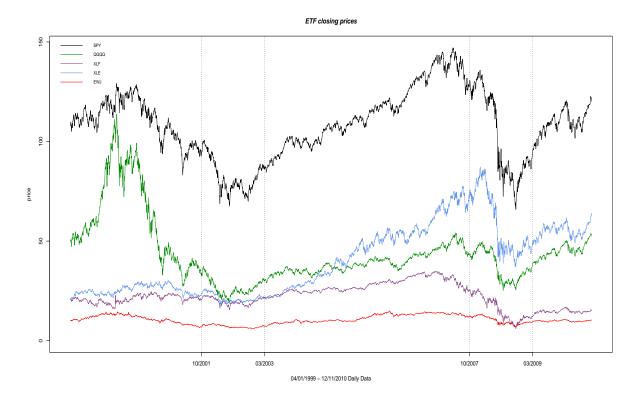



Figure 3. ETF data series and evaluation sample splits

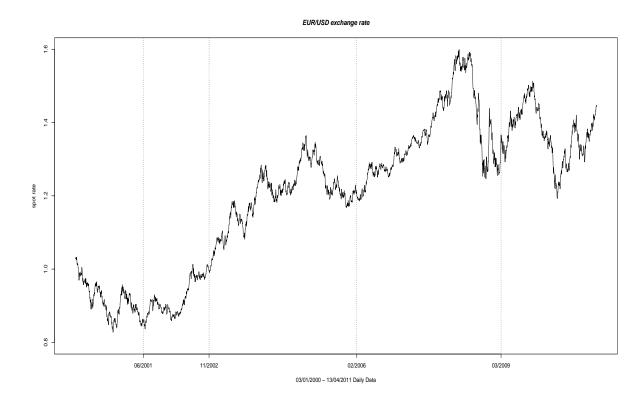



Figure 4. EUR/USD data series and evaluation sample splits

|                             |          |                 | Table           | 1. Strategy | evaluation st    | atistics for I                   | JIA Index                                     |       |       |        |
|-----------------------------|----------|-----------------|-----------------|-------------|------------------|----------------------------------|-----------------------------------------------|-------|-------|--------|
|                             |          | MA <sub>1</sub> | MA <sub>2</sub> | WMA1        | WMA <sub>2</sub> | EMA <sub>1</sub>                 | EMA <sub>2</sub>                              | MACO  | WMACO | EMACO  |
|                             |          |                 | -               |             | _                | n1=206                           |                                               |       |       |        |
| $k_1 = 20$                  | TR       | 15.46           | 32.38           | 11.99       | 40.68            | 25.84                            | 27.22                                         | 45.37 | 91.95 | 11.54  |
| $k_2 = 50$                  | AR       | 0.01            | 0.01            | 0.01        | 0.02             | 0.02                             | 0.01                                          | 0.05  | 0.05  | 0.00   |
|                             | SD       | 0.00            | 0.00            | 0.00        | 0.00             | 0.00                             | 0.00                                          | 0.00  | 0.00  | 0.01   |
|                             | SR       | 0.07            | 0.08            | 0.09        | 0.14             | 0.14                             | 0.06                                          | 0.36  | 0.31  | -0.01  |
|                             | MD       | 0.31            | 0.10            | -0.07       | 0.51             | 0.20                             | 0.04                                          | -0.07 | 0.05  | 0.69   |
|                             | MDD      | -1690           | 28              | -1149       | -437             | -365                             | -260                                          | -1244 | 4     | 446    |
| $k_1 = 20$                  | TR       | 15.46           | 3.76            | 11.99       | -3.54            | 25.84                            | 19.54                                         | 90.49 | 22.60 | 44.39  |
| $k_2 = 100$                 | AR       | 0.01            | 0.00            | 0.01        | 0.00             | 0.02                             | 0.01                                          | 0.04  | 0.01  | 0.02   |
|                             | SD       | 0.00            | 0.00            | 0.00        | 0.00             | 0.00                             | 0.00                                          | -0.01 | 0.00  | 0.00   |
|                             | SR       | 0.07            | 0.00            | 0.09        | -0.03            | 0.14                             | 0.04                                          | 0.29  | 0.09  | 0.11   |
|                             | MD       | 0.31            | 0.12            | -0.07       | 0.10             | 0.20                             | -0.19                                         | 0.31  | 0.11  | -0.10  |
|                             | MDD      | -1690           | -34             | -1149       | -12              | -365                             | -133                                          | 195   | 474   | -199   |
| $k_1 = 50$                  | TR       | 32.38           | 4.97            | 40.68       | 4.65             | 9.04                             | -63.52                                        | 52.13 | 41.57 | -19.73 |
| $k_2 = 200$                 | AR       | 0.01            | 0.00            | 0.02        | 0.00             | 0.00                             | -0.02                                         | 0.01  | 0.01  | -0.01  |
| -                           | SD       | 0.00            | 0.01            | 0.00        | 0.00             | 0.01                             | 0.03                                          | -0.01 | -0.01 | 0.03   |
|                             | SR       | 0.08            | -0.02           | 0.14        | 0.00             | -0.01                            | -0.26                                         | 0.11  | 0.13  | -0.16  |
|                             | MD       | 0.10            | -0.54           | 0.51        | -0.07            | 0.33                             | 4.85                                          | -0.74 | -0.29 | 4.66   |
|                             | MDD      | 28              | 62              | -437        | -127             | -260                             | 2398                                          | 846   | 33    | 1346   |
|                             |          |                 |                 |             |                  | n <sub>1</sub> =293              |                                               |       |       |        |
| $k_1 = 20$                  | TR       | 0.24            | 0.05            | 0.10        | 0.21             | 0.32                             | 0.28                                          | 0.35  | 0.09  | -0.13  |
| $k_2 = 50$                  | AR       | 0.03            | 0.01            | 0.01        | 0.02             | 0.04                             | 0.04                                          | 0.05  | 0.01  | -0.02  |
|                             | SD       | 0.00            | 0.00            | 0.00        | 0.00             | 0.00                             | 0.00                                          | -0.01 | -0.01 | 0.00   |
|                             | SR       | 0.18            | 0.05            | 0.08        | 0.16             | 0.26                             | 0.28                                          | 0.38  | 0.09  | -0.11  |
|                             | MD       | -0.19           | 0.09            | -0.04       | -0.02            | -0.27                            | 0.04                                          | 0.07  | 0.11  | 0.42   |
|                             | MDD      | -112            | -60             | -726        | 67               | -781                             | -329                                          | -423  | -78   | 845    |
| $k_1 = 20$                  | TR       | 0.24            | -0.07           | 0.10        | -0.06            | 0.32                             | 0.18                                          | 0.22  | -0.09 | 0.29   |
| $k_2 = 100$                 | AR       | 0.03            | -0.01           | 0.01        | -0.01            | 0.04                             | 0.03                                          | 0.03  | -0.01 | 0.04   |
|                             | SD       | 0.00            | 0.00            | 0.00        | 0.00             | 0.00                             | 0.00                                          | -0.01 | -0.01 | 0.00   |
|                             | SR       | 0.18            | -0.10           | 0.08        | -0.07            | 0.26                             | 0.21                                          | 0.23  | -0.09 | 0.30   |
|                             | MD       | -0.19           | 0.11            | -0.04       | 0.25             | -0.27                            | -0.17                                         | 0.28  | 0.55  | -0.15  |
|                             | MDD      | -112            | -35             | -726        | -17              | -781                             | -395                                          | -124  | 416   | -385   |
| $k_1 = 50$                  | TR       | 0.05            | -0.07           | 0.21        | 0.11             | 0.32                             | 0.43                                          | 0.05  | 0.06  | 0.00   |
| $k_2 = 200$                 | AR       | 0.01            | -0.01           | 0.02        | 0.02             | 0.04                             | 0.06                                          | 0.01  | 0.01  | 0.00   |
|                             | SD       | 0.00            | 0.01            | 0.00        | 0.00             | 0.00                             | 0.01                                          | 0.01  | 0.00  | 0.02   |
|                             | SR       | 0.05            | -0.07           | 0.16        | 0.12             | 0.32                             | 0.42                                          | 0.04  | 0.06  | -0.04  |
|                             | MD       | 0.09            | -0.02           | -0.02       | -0.08            | 0.03                             | -0.16                                         | -0.16 | -0.28 | 0.21   |
|                             | MDD      | -60             | -23             | 67          | -64              | -568                             | -840                                          | -728  | -558  | -153   |
| 1 20                        | TD       | 1 56            | 8.74            | 2.66        |                  | $\frac{1}{7.47}$ ge across $n_1$ | given k <sub>1</sub> , k <sub>2</sub><br>7.25 | 12.54 | 23.79 | 2.45   |
| $k_1 = 20$                  | TR       | 4.56<br>0.02    | 0.01            | 3.66        | 11.53            |                                  |                                               | 12.54 |       | 0.00   |
| $k_2 = 50$                  | AR<br>SD | 0.02            | 0.01            | 0.02        | 0.03             | 0.04<br>0.00                     | 0.02 0.00                                     | 0.05  | 0.03  | 0.00   |
|                             | SR       | 0.00            | 0.00            | 0.00        | 0.00             | 0.00                             | 0.00                                          | 0.33  | 0.00  | -0.05  |
|                             | MD       | -0.06           | 0.08            | -0.16       | 0.17             | -0.14                            | 0.15                                          | -0.01 | 0.21  | 0.52   |
|                             | MDD      | -786            | 6               | -1160       | -271             | -0.14                            | -277                                          | -643  | -62   | 772    |
| $k_1 = 20$                  | TR       | 4.56            | 0.36            | 3.66        | -1.35            | 7.47                             | 5.53                                          | 23.95 | 5.53  | 12.33  |
| $k_2 = 100$                 | AR       | 0.02            | -0.01           | 0.02        | -0.01            | 0.04                             | 0.02                                          | 0.03  | 0.00  | 0.03   |
| <i>w</i> <sub>2</sub> = 100 | SD       | 0.00            | 0.00            | 0.00        | 0.00             | 0.00                             | 0.00                                          | -0.01 | 0.00  | 0.00   |
|                             | SR       | 0.14            | -0.07           | 0.14        | -0.05            | 0.24                             | 0.11                                          | 0.24  | 0.02  | 0.19   |
|                             | MD       | -0.06           | 0.12            | -0.16       | 0.22             | -0.14                            | -0.19                                         | 0.24  | 0.40  | -0.20  |
|                             | MDD      | -786            | -34             | -1160       | -13              | -534                             | -199                                          | 8     | 417   | -398   |
| $k_1 = 50$                  | TR       | 8.74            | 0.06            | 11.53       | 0.82             | 2.77                             | -15.35                                        | 13.04 | 10.70 | -4.34  |
| $k_2 = 200$                 | AR       | 0.01            | -0.01           | 0.03        | 0.01             | 0.02                             | 0.02                                          | 0.01  | 0.01  | 0.00   |
| 2 ====                      | SD       | 0.00            | 0.01            | 0.00        | 0.00             | 0.00                             | 0.02                                          | 0.00  | 0.00  | 0.02   |
|                             | SR       | 0.08            | -0.09           | 0.17        | 0.02             | 0.12                             | 0.07                                          | 0.04  | 0.07  | -0.03  |
|                             | MD       | 0.12            | -0.14           | 0.10        | -0.07            | 0.12                             | 1.03                                          | -0.25 | -0.25 | 1.12   |
|                             | MDD      | 6               | 41              | -271        | -111             | -337                             | 205                                           | 59    | -378  | -90    |
|                             |          |                 |                 | 27.         |                  |                                  | 200                                           |       | 570   |        |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|                             |          |                 | Table           | 2. Strategy e    | valuation sta    | atistics for S      | P500 Index       |              |              |              |
|-----------------------------|----------|-----------------|-----------------|------------------|------------------|---------------------|------------------|--------------|--------------|--------------|
|                             |          | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> | EMA <sub>1</sub>    | EMA <sub>2</sub> | MACO         | WMACO        | EMACO        |
|                             |          |                 |                 |                  |                  | n <sub>1</sub> =153 |                  |              |              |              |
| $k_1 = 20$                  | TR       | 6.26            | -6.35           | 8.24             | 7.17             | 10.44               | 3.95             | 42.37        | 5.51         | 7.55         |
| $k_2 = 50$                  | AR       | 0.02            | -0.01           | 0.02             | 0.01             | 0.02                | 0.00             | 0.06         | 0.01         | 0.01         |
|                             | SD       | 0.00            | 0.00            | 0.00             | 0.00             | 0.00                | 0.00             | -0.01        | 0.00         | 0.01         |
|                             | SR       | 0.12            | -0.10           | 0.17             | 0.11             | 0.19                | 0.03             | 0.48         | 0.05         | 0.03         |
|                             | MD       | -0.02           | 0.14            | -0.13            | -0.59            | -0.61               | -0.28            | -0.22        | 0.18         | 0.08         |
|                             | MDD      | -294            | 293             | -556             | -406             | -96                 | -417             | -1195        | 247          | 297          |
| $k_1 = 20$                  | TR       | 6.26            | 8.08            | 8.24             | 10.55            | 10.44               | -13.27           | 48.08        | 27.60        | 39.61        |
| $k_2 = 100$                 | AR       | 0.02            | 0.01            | 0.02             | 0.01             | 0.02                | -0.01            | 0.04         | 0.02         | 0.02         |
|                             | SD       | 0.00            | 0.00            | 0.00             | 0.00             | 0.00                | 0.00             | 0.00         | 0.00         | 0.00         |
|                             | SR<br>MD | 0.12<br>-0.02   | 0.03            | 0.17<br>-0.13    | 0.07<br>-0.23    | 0.19<br>-0.61       | -0.09<br>0.12    | 0.35<br>0.06 | 0.15<br>0.00 | 0.15<br>0.22 |
|                             | MDD      | -0.02           | -0.21           | -556             | -0.23            | -0.61               | 179              | -185         | 126          | 138          |
| 1. 50                       |          | -6.35           | -13.59          | 7.17             | -11.71           | 4.39                | -13.11           | -32.25       | 39.70        | -28.35       |
| $k_1 = 50$                  | TR       |                 | -13.39          |                  | -0.01            |                     | -0.01            |              |              | -28.55       |
| $k_2 = 200$                 | AR       | -0.01           |                 | 0.01             |                  | 0.00                |                  | -0.03        | 0.02         | -0.05        |
|                             | SD<br>SR | 0.00            | 0.01            | 0.00             | 0.01             | 0.00                | 0.01             | 0.00         | 0.00         |              |
|                             |          | -0.10           |                 | 0.11             | -0.09            | 0.03                | -0.12            | -0.18        | 0.13         | -0.25        |
|                             | MD       | 0.14            | 0.39<br>1159    | -0.59            | 0.18             | -0.28               | 0.37             | 0.23<br>1027 | 0.19         | 0.57         |
|                             | MDD      | 293             | 1159            | -406             | 225              | -417<br>n1=293      | 711              | 1027         | 64           | 1516         |
| 1. 20                       | TR       | -0.09           | -0.20           | 0.21             | 0.35             | 0.28                | 0.16             | 0.72         | 0.12         | 0.22         |
| $k_1 = 20$                  | AR       | -0.09           | -0.20           | 0.21             | 0.35             | 0.28                | 0.10             | 0.12         | 0.12         | 0.22         |
| $k_2 = 50$                  | SD       | 0.00            | 0.00            | -0.01            | 0.00             | 0.03                | 0.02             | -0.02        | -0.01        | 0.02         |
|                             | SR       | -0.09           | -0.19           | 0.22             | 0.00             | 0.00                | 0.00             | -0.02        | -0.01        | 0.00         |
|                             | MD       | -0.09           | 0.19            | -0.21            | -0.41            | -0.48               | -0.08            | -0.39        | 0.10         | -0.05        |
|                             | MDD      | -0.01           | 594             | -0.21            | -968             | -0.48               | -280             | -0.39        | -240         | -0.03        |
| $k_1 = 20$                  | TR       | -0.09           | 0.08            | 0.21             | 0.01             | 0.28                | 0.06             | 0.72         | 0.26         | 0.67         |
| $k_1 = 20$<br>$k_2 = 100$   | AR       | -0.09           | 0.03            | 0.04             | 0.00             | 0.28                | 0.00             | 0.08         | 0.20         | 0.07         |
| <i>k</i> <sub>2</sub> = 100 | SD       | 0.00            | 0.00            | -0.01            | 0.00             | 0.00                | 0.00             | -0.01        | -0.01        | 0.00         |
|                             | SR       | -0.09           | 0.08            | 0.22             | 0.01             | 0.32                | 0.04             | 0.59         | 0.22         | 0.55         |
|                             | MD       | -0.01           | -0.11           | -0.21            | 0.02             | -0.48               | -0.02            | -0.26        | -0.05        | -0.14        |
|                             | MDD      | 24              | -103            | -71              | -39              | -238                | -32              | -1042        | -148         | -696         |
| $k_1 = 50$                  | TR       | -0.20           | 0.06            | 0.35             | 0.01             | 0.14                | -0.09            | -0.65        | 0.00         | -0.86        |
| $k_2 = 200$                 | AR       | -0.03           | 0.01            | 0.05             | 0.00             | 0.02                | -0.01            | -0.07        | 0.00         | -0.10        |
|                             | SD       | 0.00            | 0.01            | 0.00             | 0.00             | 0.00                | 0.02             | 0.00         | 0.00         | 0.05         |
|                             | SR       | -0.19           | 0.03            | 0.36             | 0.00             | 0.11                | -0.14            | -0.46        | -0.01        | -0.65        |
|                             | MD       | 0.21            | 0.04            | -0.41            | 0.02             | -0.05               | 0.02             | 0.13         | 0.00         | 0.82         |
|                             | MDD      | 594             | 19              | -968             | 4                | -260                | 9                | 729          | 72           | 1264         |
|                             |          |                 |                 |                  |                  |                     | given $k_1, k_2$ | ,            |              |              |
| $k_1 = 20$                  | TR       | 1.81            | -2.12           | 2.59             | 2.43             | 3.33                | 1.34             | 13.53        | 1.39         | 2.11         |
| $k_2 = 50$                  | AR       | 0.00            | -0.02           | 0.03             | 0.03             | 0.04                | 0.01             | 0.07         | 0.01         | 0.01         |
| -                           | SD       | 0.00            | 0.00            | 0.00             | 0.00             | 0.00                | 0.00             | -0.01        | 0.00         | 0.00         |
|                             | SR       | 0.03            | -0.13           | 0.19             | 0.23             | 0.26                | 0.08             | 0.54         | 0.06         | 0.06         |
|                             | MD       | -0.01           | 0.15            | -0.15            | -0.55            | -0.58               | -0.23            | -0.31        | 0.06         | 0.01         |
|                             | MDD      | -139            | 368             | -265             | -637             | -132                | -383             | -1279        | -23          | 29           |
| $k_1 = 20$                  | TR       | 1.81            | 2.28            | 2.59             | 3.21             | 3.33                | -4.12            | 14.26        | 7.57         | 11.94        |
| $k_2 = 100$                 | AR       | 0.00            | 0.01            | 0.03             | 0.01             | 0.04                | -0.01            | 0.05         | 0.02         | 0.04         |
| -                           | SD       | 0.00            | 0.00            | 0.00             | 0.00             | 0.00                | 0.00             | 0.00         | 0.00         | 0.00         |
|                             | SR       | 0.03            | 0.05            | 0.19             | 0.06             | 0.26                | -0.07            | 0.40         | 0.13         | 0.26         |
|                             | MD       | -0.01           | -0.18           | -0.15            | -0.17            | -0.58               | 0.09             | -0.14        | -0.03        | 0.03         |
|                             | MDD      | -139            | -54             | -265             | -212             | -132                | 126              | -665         | -31          | -313         |
| $k_1 = 50$                  | TR       | -2.12           | -4.27           | 2.43             | -3.65            | 1.45                | -4.20            | -11.17       | 11.70        | -10.08       |
| $k_2 = 200$                 | AR       | -0.02           | 0.00            | 0.03             | 0.00             | 0.01                | -0.01            | -0.04        | 0.01         | -0.06        |
|                             | SD       | 0.00            | 0.01            | 0.00             | 0.00             | 0.00                | 0.01             | 0.00         | 0.00         | 0.02         |
|                             | SR       | -0.13           | -0.06           | 0.23             | -0.04            | 0.08                | -0.11            | -0.27        | 0.11         | -0.39        |
|                             | MD       | 0.15            | 0.24            | -0.55            | 0.10             | -0.22               | 0.19             | 0.17         | 0.06         | 0.70         |
|                             | MDD      | 368             | 712             | -637             | 112              | -378                | 410              | 798          | -139         | 1576         |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EMACO<br>0.33<br>0.03<br>0.00<br>0.24<br>0.01<br>-276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50 |      | MACO  |      | EMA <sub>1</sub> | WMAa | WMA.   | MAa   | MA.   |     |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------|-------|------|------------------|------|--------|-------|-------|-----|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03<br>0.00<br>0.24<br>0.01<br>-276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                  |      |       |      |                  |      | " mini | ming  | mini  |     |                             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.03<br>0.00<br>0.24<br>0.01<br>-276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                  |      |       |      |                  |      |        |       |       |     |                             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00<br>0.24<br>0.01<br>-276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                          |      |       |      |                  |      |        |       |       |     |                             |
| $ \begin{array}{c} & {\rm SR} & -0.15 & -0.13 & 0.12 & 0.38 & 0.52 & 0.20 & 0.50 & 0.39 \\ {\rm MD} & 0.03 & 0.08 & -0.15 & -0.18 & -0.50 & -0.10 & -0.19 & -0.11 \\ {\rm MDD} & 212 & -48 & -18 & -228 & -307 & -56 & -230 & -603 \\ {\rm TR} & -0.15 & 0.32 & 0.12 & -0.07 & 0.59 & 0.14 & 0.49 & 0.46 \\ {\rm AR} & -0.03 & 0.04 & 0.02 & -0.01 & 0.08 & 0.02 & 0.05 & 0.04 \\ {\rm SD} & 0.00 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 & 0.00 \\ {\rm SR} & -0.15 & 0.29 & 0.12 & -0.08 & 0.52 & 0.11 & 0.38 & 0.30 \\ {\rm MDD} & 0.03 & -0.04 & -0.15 & 0.17 & -0.50 & -0.02 & -0.15 & -0.03 \\ {\rm MDD} & 212 & -67 & -18 & 48 & -307 & -18 & -86 & -181 \\ {\rm R} & -0.11 & 0.28 & 0.44 & 0.10 & 0.28 & 0.61 & -0.18 & 0.66 \\ {\rm k}_2 = 200 & {\rm AR} & -0.02 & 0.03 & 0.06 & 0.01 & 0.03 & 0.05 & -0.04 & 0.05 \\ {\rm SD} & 0.01 & 0.00 & 0.00 & 0.01 & 0.00 & 0.02 & 0.01 & 0.00 \\ \end{array} \right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.24<br>0.01<br>-276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                                  |      |       |      |                  |      |        |       |       |     | $k_2 = 50$                  |
| $ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} \mathrm{MD} & 0.03 & 0.08 & -0.15 & -0.18 & -0.50 & -0.10 & -0.19 & -0.11 \\ \mathrm{MDD} & 212 & -48 & -18 & -228 & -307 & -56 & -230 & -603 \\ \hline \mathrm{R} & -0.15 & 0.32 & 0.12 & -0.07 & 0.59 & 0.14 & 0.49 & 0.46 \\ \mathrm{AR} & -0.03 & 0.04 & 0.02 & -0.01 & 0.08 & 0.02 & 0.05 & 0.04 \\ \mathrm{SD} & 0.00 & 0.00 & -0.01 & 0.00 & 0.00 & 0.00 \\ \mathrm{SR} & -0.15 & 0.29 & 0.12 & -0.08 & 0.52 & 0.11 & 0.38 & 0.30 \\ \mathrm{MDD} & 0.03 & -0.04 & -0.15 & 0.17 & -0.50 & -0.02 & -0.15 & -0.03 \\ \mathrm{MDD} & 0.03 & -0.04 & -0.15 & 0.17 & -0.50 & -0.02 & -0.15 & -0.03 \\ \mathrm{MDD} & 212 & -67 & -18 & 48 & -307 & -18 & -86 & -181 \\ \hline \mathrm{R} & -0.11 & 0.28 & 0.44 & 0.10 & 0.28 & 0.61 & -0.18 & 0.66 \\ \mathrm{k_2} = 200 & \mathrm{AR} & -0.02 & 0.03 & 0.06 & 0.01 & 0.03 & 0.05 & -0.04 & 0.05 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01<br>-276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                                          |      |       |      |                  |      |        |       |       |     |                             |
| $ \begin{array}{c} {\rm MDD} & 212 & -48 & -18 & -228 & -307 & -56 & -230 & -603 \\ {\rm R} & -0.15 & 0.32 & 0.12 & -0.07 & 0.59 & 0.14 & 0.49 & 0.46 \\ {\rm AR} & -0.03 & 0.04 & 0.02 & -0.01 & 0.08 & 0.02 & 0.05 & 0.04 \\ {\rm SD} & 0.00 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 & 0.00 \\ {\rm SR} & -0.15 & 0.29 & 0.12 & -0.08 & 0.52 & 0.11 & 0.38 & 0.30 \\ {\rm MDD} & 0.03 & -0.04 & -0.15 & 0.17 & -0.50 & -0.02 & -0.15 & -0.03 \\ {\rm MDD} & 212 & -67 & -18 & 48 & -307 & -18 & -86 & -181 \\ {\rm R} & -0.11 & 0.28 & 0.44 & 0.10 & 0.28 & 0.61 & -0.18 & 0.66 \\ {\rm k}_2 = 200 & {\rm AR} & -0.02 & 0.03 & 0.06 & 0.01 & 0.03 & 0.05 & -0.04 & 0.05 \\ {\rm SD} & 0.01 & 0.00 & 0.00 & 0.01 & 0.00 & 0.02 & 0.01 & 0.00 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -276<br>0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                                                  |      |       |      |                  |      |        |       |       |     |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.26<br>0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                                                          |      |       |      |                  |      |        |       |       |     |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.03<br>0.00<br>0.19<br>-0.01<br>-70<br>-0.50                                                                  |      |       |      |                  |      |        |       |       |     |                             |
| $ \begin{array}{c} & {\rm SD} & 0.00 & 0.00 & -0.01 & 0.00 & -0.01 & 0.00 & 0.00 \\ {\rm SR} & -0.15 & 0.29 & 0.12 & -0.08 & 0.52 & 0.11 & 0.38 & 0.30 \\ {\rm MDD} & 0.03 & -0.04 & -0.15 & 0.17 & -0.50 & -0.02 & -0.15 & -0.03 \\ {\rm MDD} & 212 & -67 & -18 & 48 & -307 & -18 & -36 & -181 \\ {\rm R} & -0.11 & 0.28 & 0.44 & 0.10 & 0.28 & 0.61 & -0.18 & 0.66 \\ {\rm Ag} & -0.02 & 0.03 & 0.06 & 0.01 & 0.03 & 0.05 & -0.04 & 0.05 \\ {\rm SD} & 0.01 & 0.00 & 0.00 & 0.01 & 0.00 & 0.02 & 0.01 & 0.00 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00<br>0.19<br>-0.01<br>-70<br>-0.50                                                                          |      |       |      |                  |      |        |       |       |     | $k_1 = 20$                  |
| $k_1 = 50 \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.19<br>-0.01<br>-70<br>-0.50                                                                                  |      |       |      |                  |      |        |       |       |     | $k_2 = 100$                 |
| $ k_1 = 50 \\ k_2 = 200 \\ k_3 = 0.10 \\ \frac{\text{MDD}}{\text{SD}} = 0.03 \\ 0.03 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ $ | -0.01<br>-70<br>-0.50                                                                                          |      |       |      |                  |      |        |       |       |     |                             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -70<br>-0.50                                                                                                   |      |       |      |                  |      |        |       |       |     |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.50                                                                                                          |      |       |      |                  |      |        |       |       |     |                             |
| $k_2 = 200 \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |      |       |      |                  |      |        |       |       |     |                             |
| SD 0.01 0.00 0.00 0.01 0.00 0.02 0.01 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |      |       |      |                  |      |        |       |       |     | $k_1 = 50$                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.05                                                                                                          |      |       |      |                  |      |        |       |       |     | $k_2 = 200$                 |
| SR -0.13 0.19 0.38 0.04 0.16 0.30 -0.30 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.07                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.55                                                                                                          |      |       |      |                  |      |        |       |       |     |                             |
| MD 0.08 -0.12 -0.18 0.00 -0.10 -0.07 0.12 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.99                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MDD -48 -76 -228 56 -56 -123 266 -68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 538                                                                                                            | -68  | 266   |      |                  | 56   | -228   | -76   | -48   | MDD |                             |
| $n_1 = 787$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                           | 0.12 | 0.20  |      |                  | 0.02 | 0.01   | 0.00  | 0.11  | TD  | 1 20                        |
| $k_1 = 20$ TR -0.11 -0.06 -0.01 0.02 0.23 0.19 0.30 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                           |      |       |      |                  |      |        |       |       |     | $k_1 = 20$                  |
| $k_2 = 50 \qquad \text{AR} \qquad -0.06 \qquad -0.03 \qquad -0.01 \qquad 0.01 \qquad 0.12 \qquad 0.10 \qquad 0.17 \qquad 0.06 \\ \text{SD} \qquad 0.00 \qquad 0.01 \qquad -0.01 \qquad -0.02 \qquad -0.02 \qquad 0.01 \qquad -0.03 \qquad -0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                           |      |       |      |                  |      |        |       |       |     | $k_2 = 50$                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MD 0.03 0.06 -0.12 -0.10 -0.41 -0.08 -0.20 -0.08<br>MDD -57 -10 -96 -157 -267 -68 -211 -48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03<br>-8                                                                                                     |      |       |      |                  |      |        |       |       |     |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8                                                                                                             |      |       |      |                  |      |        |       |       |     | 1. 20                       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.04                                                                                                           |      |       |      |                  |      |        |       |       |     | $k_1 = 20$<br>$k_1 = 100$   |
| $x_2 = 100$ AR = 0.00 0.03 = 0.01 = 0.04 0.12 0.08 0.11 0.10<br>SD 0.00 0.00 -0.01 0.00 -0.02 0.01 -0.01 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                           |      |       |      |                  |      |        |       |       |     | $k_2 = 100$                 |
| SR -0.29 0.18 -0.03 -0.19 0.64 0.49 0.72 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MD 0.03 0.00 -0.12 0.14 -0.41 -0.05 -0.06 -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MDD -57 -19 -96 48 -267 -49 -90 -22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                              |      |       |      |                  |      |        |       |       |     |                             |
| $k_1 = 50$ TR -0.06 0.12 0.02 0.04 0.20 -0.23 0.17 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.23                                                                                                          |      |       |      |                  |      |        |       |       |     | $k_{1} = 50$                |
| $k_1 = 50$ AR $-0.03$ $0.09$ $0.01$ $0.03$ $0.09$ $-0.09$ $0.10$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.11                                                                                                          |      |       |      |                  |      |        |       |       |     | $k_2 = 200$                 |
| SD 0.01 0.00 -0.02 0.00 0.01 0.17 -0.01 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                           |      |       |      |                  |      |        |       |       |     | <i>k</i> <sub>2</sub> = 200 |
| SR -0.17 0.50 0.05 0.17 0.42 -0.48 0.59 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.67                                                                                                          |      |       |      |                  |      |        |       |       |     |                             |
| MD 0.06 -0.07 -0.10 -0.03 -0.01 0.56 0.00 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.70                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MDD -10 -72 -157 -27 -9 397 52 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 428                                                                                                            |      |       |      |                  |      |        |       |       |     |                             |
| Average across $n_1$ given $k_1, k_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |      |       |      |                  |      |        |       |       |     |                             |
| $k_1 = 20$ TR -0.03 0.02 0.13 0.23 0.35 0.19 0.52 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.13                                                                                                           | 0.35 | 0.52  |      |                  |      | 0.13   | 0.02  | -0.03 | TR  | $k_1 = 20$                  |
| $k_2 = 50$ AR -0.02 0.01 0.02 0.04 0.07 0.04 0.14 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                           | 0.07 | 0.14  | 0.04 | 0.07             |      | 0.02   | 0.01  | -0.02 | AR  | $k_2 = 50$                  |
| SD 0.00 0.01 -0.01 0.00 -0.01 0.01 -0.01 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                           | 0.00 | -0.01 | 0.01 | -0.01            | 0.00 | -0.01  | 0.01  | 0.00  | SD  | 2                           |
| SR -0.11 -0.10 0.15 0.25 0.59 0.28 0.65 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.14                                                                                                           | 0.38 | 0.65  | 0.28 | 0.59             | 0.25 |        | -0.10 |       | SR  |                             |
| MD 0.05 0.08 -0.09 -0.10 -0.34 -0.07 -0.16 -0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MDD 25 -26 -50 -150 -217 -45 -188 -229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -142                                                                                                           | -229 | -188  | -45  | -217             | -150 | -50    | -26   | 25    | MDD |                             |
| $k_1 = 20$ TR -0.03 0.25 0.13 0.03 0.35 0.11 0.37 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.12                                                                                                           | 0.40 | 0.37  | 0.11 | 0.35             | 0.03 | 0.13   |       | -0.03 | TR  | $k_1 = 20$                  |
| $k_2 = 100$ AR -0.02 0.07 0.02 0.07 0.04 0.09 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                           | 0.10 | 0.09  | 0.04 | 0.07             | 0.02 | 0.02   | 0.07  | -0.02 | AR  | $k_2 = 100$                 |
| SD 0.00 0.01 -0.01 0.01 -0.01 0.01 0.01 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                           | 0.00 | 0.01  | 0.01 | -0.01            | 0.01 | -0.01  | 0.01  | 0.00  | SD  | -                           |
| SR -0.11 0.23 0.15 -0.12 0.59 0.23 0.49 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.11                                                                                                           | 0.39 |       |      |                  |      |        |       |       |     |                             |
| MD 0.05 -0.04 -0.09 0.10 -0.34 -0.04 -0.09 -0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MDD 25 -78 -50 34 -217 -24 -68 -115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                             |      |       |      |                  |      |        |       |       |     |                             |
| $k_1 = 50$ TR 0.02 0.26 0.23 0.17 0.18 0.17 0.16 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.33                                                                                                          |      |       |      |                  |      |        |       |       |     | $k_1 = 50$                  |
| $k_2 = 200$ AR 0.01 0.09 0.04 0.05 0.03 0.02 0.06 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.06                                                                                                          |      |       |      |                  |      |        |       |       |     | $k_2 = 200$                 |
| SD 0.01 0.01 0.00 0.02 0.01 0.05 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.06                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| SR -0.10 0.28 0.25 0.09 0.24 0.05 0.05 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.61                                                                                                          |      |       |      |                  |      |        |       |       |     |                             |
| MD 0.08 -0.09 -0.10 -0.02 -0.06 0.10 0.06 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.58                                                                                                           |      |       |      |                  |      |        |       |       |     |                             |
| MDD -26 -54 -150 6 -31 37 162 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 343                                                                                                            | 12   | 162   | 37   | -31              | 6    | -150   | -54   | -26   | MDD |                             |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|                             |          |                 | Ta              | ble 4. Strate    | gy evaluation    | statistics fo                    | r 0000               |       |              |       |
|-----------------------------|----------|-----------------|-----------------|------------------|------------------|----------------------------------|----------------------|-------|--------------|-------|
|                             |          | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> | EMA <sub>1</sub>                 | EMA <sub>2</sub>     | MACO  | WMACO        | EMACO |
|                             |          |                 |                 |                  |                  | n1=22                            |                      |       |              |       |
| $k_1 = 20$                  | TR       | 0.26            | 1.24            | 0.36             | 0.01             | 0.60                             | 0.71                 | 0.36  | 0.32         | 0.66  |
| $k_2 = 50$                  | AR       | 0.03            | 0.10            | 0.05             | 0.00             | 0.06                             | 0.07                 | 0.04  | 0.03         | 0.05  |
|                             | SD       | 0.00            | 0.00            | 0.00             | 0.00             | 0.00                             | 0.00                 | 0.00  | -0.01        | -0.01 |
|                             | SR       | 0.15            | 0.44            | 0.20             | -0.02            | 0.29                             | 0.37                 | 0.16  | 0.12         | 0.31  |
|                             | MD       | -0.03           | -0.01           | -0.07            | 0.04             | -0.07                            | -0.28                | 0.07  | -0.01        | -0.21 |
|                             | MDD      | -547            | -13             | -330             | -164             | -277                             | -341                 | 502   | 358          | -195  |
| $k_1 = 20$                  | TR       | 0.26            | 0.56            | 0.36             | 0.89             | 0.60                             | 0.46                 | 0.46  | 0.32         | 0.69  |
| $k_2 = 100$                 | AR       | 0.03            | 0.04            | 0.05             | 0.08             | 0.06                             | 0.04                 | 0.04  | 0.01         | 0.06  |
| -                           | SD       | 0.00            | 0.01            | 0.00             | 0.01             | 0.00                             | 0.00                 | 0.00  | 0.00         | 0.00  |
|                             | SR       | 0.15            | 0.20            | 0.20             | 0.34             | 0.29                             | 0.23                 | 0.23  | 0.07         | 0.31  |
|                             | MD       | -0.03           | 0.02            | -0.07            | -0.14            | -0.07                            | -0.09                | 0.11  | -0.03        | 0.00  |
|                             | MDD      | -547            | -343            | -330             | -201             | -277                             | 68                   | -243  | 92           | -388  |
| $k_1 = 50$                  | TR       | 1.24            | 0.15            | 0.01             | 0.22             | 0.46                             | 0.13                 | -0.29 | 1.20         | 0.33  |
| $k_2 = 200$                 | AR       | 0.10            | 0.01            | 0.00             | 0.02             | 0.05                             | 0.00                 | -0.03 | 0.09         | 0.02  |
| -                           | SD       | 0.00            | 0.02            | 0.00             | 0.00             | 0.00                             | 0.02                 | 0.05  | 0.00         | 0.03  |
|                             | SR       | 0.44            | -0.01           | -0.02            | 0.14             | 0.25                             | -0.02                | -0.30 | 0.44         | -0.02 |
|                             | MD       | -0.01           | 0.13            | 0.04             | 0.02             | -0.28                            | 0.05                 | 0.71  | -0.13        | 0.00  |
|                             | MDD      | -13             | 176             | -164             | 280              | -341                             | 150                  | 1142  | -149         | -464  |
|                             | -        |                 |                 |                  |                  | $n_1 = 78$                       | 7                    |       |              |       |
| $k_1 = 20$                  | TR       | -0.08           | 0.27            | 0.05             | -0.31            | 0.11                             | 0.28                 | 0.18  | 0.04         | 0.21  |
| $k_2 = 50$                  | AR       | -0.03           | 0.12            | 0.01             | -0.13            | 0.05                             | 0.11                 | 0.09  | 0.02         | 0.10  |
|                             | SD       | 0.00            | -0.01           | -0.02            | 0.00             | -0.01                            | -0.01                | -0.03 | -0.01        | -0.01 |
|                             | SR       | -0.16           | 0.59            | 0.12             | -0.61            | 0.29                             | 0.62                 | 0.47  | 0.10         | 0.54  |
|                             | MD       | 0.09            | -0.12           | -0.14            | 0.17             | -0.07                            | -0.18                | -0.11 | -0.16        | -0.09 |
|                             | MDD      | -48             | -85             | -239             | 74               | -93                              | -114                 | -71   | -142         | -62   |
| $k_1 = 20$                  | TR       | -0.08           | -0.06           | 0.05             | 0.25             | 0.11                             | 0.00                 | -0.12 | 0.03         | 0.07  |
| $k_2 = 100$                 | AR       | -0.03           | -0.01           | 0.01             | 0.11             | 0.05                             | 0.00                 | -0.06 | 0.00         | 0.02  |
|                             | SD       | 0.00            | -0.01           | -0.02            | 0.00             | -0.01                            | 0.00                 | -0.01 | -0.01        | 0.00  |
|                             | SR       | -0.16           | -0.05           | 0.12             | 0.55             | 0.29                             | 0.02                 | -0.23 | 0.05         | 0.12  |
|                             | MD       | 0.09            | 0.04            | -0.14            | -0.19            | -0.07                            | -0.05                | 0.04  | -0.06        | -0.07 |
|                             | MDD      | -48             | 41              | -239             | -90              | -93                              | 31                   | -20   | 3            | -10   |
| $k_1 = 50$                  | TR       | 0.27            | -0.13           | -0.31            | 0.11             | 0.33                             | 0.14                 | 0.13  | 0.08         | -0.40 |
| $k_2 = 200$                 | AR       | 0.12            | -0.06           | -0.13            | 0.06             | 0.13                             | 0.07                 | 0.07  | 0.05         | -0.22 |
|                             | SD       | -0.01           | -0.01           | 0.00             | -0.01            | -0.01                            | 0.00                 | -0.02 | -0.01        | 0.12  |
|                             | SR       | 0.59            | -0.29           | -0.61            | 0.33             | 0.67                             | 0.40                 | 0.42  | 0.24         | -1.28 |
|                             | MD       | -0.12           | 0.11            | 0.17             | -0.02            | -0.16                            | -0.06                | -0.17 | -0.04        | 0.70  |
|                             | MDD      | -85             | 77              | 74               | -26              | -59                              | -14                  | -96   | -76          | 425   |
| 1 20                        | TD       | 0.16            | 0.82            | 0.02             |                  | ge across n <sub>1</sub><br>0.33 | given k1, k2<br>0.44 | 0.39  | 0.28         | 0.36  |
| $k_1 = 20$                  | TR       | 0.16            | 0.82            | 0.23<br>0.02     | -0.09            |                                  |                      |       |              |       |
| $k_2 = 50$                  | AR<br>SD | 0.03            | 0.12            |                  | -0.05            | 0.05<br>0.00                     | 0.08                 | 0.10  | 0.03         | 0.05  |
|                             | SD       | 0.01            | 0.00            | 0.00             | 0.01<br>-0.23    | 0.00                             | 0.00<br>0.46         | -0.01 | 0.00<br>0.17 | 0.00  |
|                             | MD       | 0.07            | -0.12           | 0.21<br>-0.07    | -0.25            | -0.04                            | -0.20                | -0.04 | -0.05        | -0.12 |
|                             | MDD      | -172            | -63             | -0.07            | -54              | -108                             | -0.20                | -0.04 | -0.03        | -109  |
| $k_1 = 20$                  | TR       | 0.16            | 0.29            | 0.23             | 0.57             | 0.33                             | 0.19                 | 0.19  | 0.24         | 0.32  |
| $k_1 = 100$<br>$k_2 = 100$  | AR       | 0.03            | 0.04            | 0.02             | 0.09             | 0.05                             | 0.03                 | 0.01  | 0.02         | 0.03  |
| <i>k</i> <sub>2</sub> = 100 | SD       | 0.01            | 0.00            | 0.00             | 0.01             | 0.00                             | 0.00                 | 0.01  | 0.00         | 0.00  |
|                             | SR       | 0.07            | 0.13            | 0.21             | 0.45             | 0.31                             | 0.15                 | 0.02  | 0.09         | 0.24  |
|                             | MD       | 0.07            | -0.01           | -0.07            | -0.16            | -0.04                            | -0.09                | 0.11  | -0.04        | -0.01 |
|                             | MDD      | -172            | -178            | -191             | -127             | -108                             | 36                   | -120  | 50           | -189  |
| $k_1 = 50$                  | TR       | 0.82            | 0.01            | -0.09            | 0.18             | 0.37                             | 0.04                 | 0.14  | 0.53         | 0.02  |
| $k_1 = 50$<br>$k_2 = 200$   | AR       | 0.12            | 0.02            | -0.05            | 0.06             | 0.07                             | 0.03                 | 0.05  | 0.07         | -0.04 |
| 2                           | SD       | 0.00            | 0.01            | 0.01             | 0.00             | 0.00                             | 0.00                 | 0.01  | 0.00         | 0.04  |
|                             | SR       | 0.55            | -0.14           | -0.04            | 0.08             | 0.31                             | -0.11                | -0.14 | 0.26         | 0.04  |
|                             | MD       | -0.12           | 0.09            | 0.10             | 0.00             | -0.19                            | 0.02                 | 0.11  | -0.04        | 0.18  |
|                             | MDD      | -63             | 105             | -54              | 130              | -190                             | 161                  | 239   | -85          | -36   |
|                             |          |                 |                 |                  |                  |                                  |                      |       |              |       |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

| Table 5. Strategy evaluation statistics for XLF                                                          |                                |                       |
|----------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|
| MA <sub>1</sub> MA <sub>2</sub> WMA <sub>1</sub> WMA <sub>2</sub> EMA <sub>1</sub> EMA <sub>2</sub> MACO | WMACO                          | EMACO                 |
| n <sub>1</sub> =2297                                                                                     |                                |                       |
| $k_1 = 20$ TR -0.20 0.03 -0.20 -0.34 0.17 0.14 0.30                                                      | -0.17                          | 0.05                  |
| $k_2 = 50$ AR -0.07 0.01 -0.08 -0.11 0.04 0.04 0.04                                                      | -0.03                          | 0.00                  |
| SD -0.01 0.02 -0.01 -0.03 -0.01 0.01 -0.04                                                               | -0.02                          | -0.02                 |
| SR -0.24 0.04 -0.27 -0.43 0.14 0.12 0.21                                                                 | -0.11                          | 0.05                  |
| MD -0.08 0.12 0.43 0.29 -1.05 -0.37 -0.02                                                                | -0.01                          | 0.05                  |
| MDD 287 175 -42 254 470 -44 -409                                                                         | 51                             | -48                   |
| k <sub>1</sub> = 20 TR -0.20 0.24 -0.20 -0.62 0.17 0.00 0.83                                             | 0.22                           | -0.06                 |
| $k_2 = 100$ AR -0.07 0.03 -0.08 -0.09 0.04 0.00 0.08                                                     | 0.02                           | -0.01                 |
| SD -0.01 -0.01 -0.01 0.00 -0.01 0.01 -0.01                                                               | -0.01                          | -0.01                 |
| SR -0.24 0.16 -0.27 -0.38 0.14 -0.01 0.43                                                                | 0.14                           | -0.04                 |
| MD -0.08 -0.08 0.43 0.67 -1.05 0.14 -0.18                                                                | -0.04                          | 0.22                  |
| MDD 287 -61 -42 175 470 9 58                                                                             | 13                             | -176                  |
| $k_1 = 50$ TR 0.03 -0.13 -0.34 -0.03 0.07 0.27 -0.04                                                     | 0.02                           | -0.37                 |
| $k_2 = 200$ AR 0.01 -0.02 -0.11 0.00 0.02 0.04 -0.01                                                     | -0.01                          | -0.06                 |
| SD 0.02 0.00 -0.03 0.00 0.01 0.02 0.01                                                                   | 0.00                           | 0.04                  |
| SR 0.04 -0.14 -0.43 -0.03 0.07 0.14 -0.10                                                                | -0.04                          | -0.36                 |
| MD 0.12 0.12 0.29 0.07 -0.37 0.05 0.16                                                                   | 0.10                           | 0.77                  |
| MDD 175 59 254 25 -44 -101 -6                                                                            | -4                             | 205                   |
| n <sub>1</sub> =787                                                                                      |                                |                       |
| $k_1 = 20$ TR -0.13 0.05 -0.16 -0.27 0.26 -0.02 0.15                                                     | -0.09                          | 0.02                  |
| $k_2 = 50$ AR -0.19 0.05 -0.23 -0.42 0.24 -0.01 0.10                                                     | -0.10                          | 0.01                  |
| SD 0.01 0.06 -0.01 -0.03 -0.01 0.03 -0.06                                                                | -0.02                          | -0.03                 |
| SR -0.39 0.17 -0.43 -0.98 0.48 -0.01 0.25                                                                | -0.22                          | 0.05                  |
| MD -0.12 0.19 0.12 0.37 -1.11 -0.18 0.02                                                                 | -0.07                          | 0.17                  |
| MDD -45 -17 -17 -39 -211 -10 -28                                                                         | 69                             | 5                     |
| k1 = 20 TR -0.13 0.04 -0.16 -0.45 0.26 -0.17 -0.05                                                       | 0.23                           | -0.15                 |
| $k_2 = 100$ AR -0.19 0.03 -0.23 -0.38 0.24 -0.15 -0.05                                                   | 0.22                           | -0.13                 |
| SD 0.01 -0.02 -0.01 0.00 -0.01 0.04 0.01                                                                 | 0.01                           | 0.00                  |
| SR -0.39 0.09 -0.43 -0.93 0.48 -0.39 -0.14                                                               | 0.56                           | -0.41                 |
| MD -0.12 -0.04 0.12 0.68 -1.11 0.33 0.17                                                                 | -0.10                          | 0.32                  |
| MDD -45 11 -17 234 -211 191 87                                                                           | -80                            | -6                    |
| $k_1 = 50$ TR 0.05 -0.13 -0.27 -0.12 0.01 -0.31 -0.79                                                    | -0.81                          | -0.37                 |
| $k_2 = 200$ AR 0.05 -0.13 -0.42 -0.10 0.04 -0.29 -0.35                                                   | -0.36                          | -0.05                 |
| SD 0.06 0.00 -0.03 -0.01 0.03 0.09 0.27                                                                  | 0.28                           | 0.37                  |
| SR 0.17 -0.49 -0.98 -0.29 0.10 -0.76 -0.97                                                               | -1.00                          | -0.12                 |
| MD 0.19 0.12 0.37 -0.02 -0.21 0.12 4.26                                                                  | 4.29                           | 2.30                  |
| MDD -17 0 -39 3 15 167 671                                                                               | 667                            | 387                   |
| Average across $n_1$ given $k_1, k_2$                                                                    |                                |                       |
| $k_1 = 20$ TR -0.12 0.30 -0.13 -0.29 0.12 0.05 0.41                                                      | -0.04                          | 0.02                  |
| $k_2 = 50$ AR -0.07 0.16 -0.09 -0.20 0.05 0.00 0.17                                                      | -0.02                          | -0.03                 |
| SD 0.00 0.05 0.00 -0.03 -0.01 0.02 -0.02                                                                 | -0.01                          | -0.02                 |
| SR -0.26 0.12 -0.29 -0.58 0.28 0.09 0.22                                                                 | -0.14                          | 0.06                  |
| MD -0.04 0.08 0.22 0.31 -0.77 -0.24 -0.04                                                                | 0.00                           | 0.11                  |
| MDD 37 -6 -25 54 35 -27 -110                                                                             | 19                             | -22                   |
| $k_1 = 20$ TR -0.12 0.39 -0.13 -0.34 0.12 -0.08 0.77                                                     | 0.50                           | -0.13                 |
| $k_2^{-1} = 100$ AR -0.07 0.15 -0.09 -0.09 0.05 -0.04 0.21                                               | 0.23                           | -0.10                 |
| SD 0.00 0.01 0.00 0.02 -0.01 0.02 0.03                                                                   | 0.03                           | -0.01                 |
| SR -0.26 0.10 -0.29 -0.57 0.28 -0.17 0.24                                                                | 0.32                           | -0.17                 |
| MD -0.04 -0.04 0.22 0.53 -0.77 0.14 -0.09                                                                | -0.10<br>-34                   | 0.27                  |
| MDD 37 -11 -25 173 35 51 33                                                                              |                                | -88                   |
|                                                                                                          |                                |                       |
| k1 = 50 TR 0.30 0.12 -0.29 0.18 0.06 -0.01 0.02                                                          | 0.06                           | -0.27                 |
|                                                                                                          | 0.06<br>-0.01                  | 0.03                  |
|                                                                                                          | 0.06<br>-0.01<br>0.11          | 0.03<br>0.09          |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                   | 0.06<br>-0.01<br>0.11<br>-0.52 | 0.03<br>0.09<br>-0.24 |
|                                                                                                          | 0.06<br>-0.01<br>0.11          | 0.03<br>0.09          |

Table 5. Strategy evaluation statistics for XLF

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$  and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|                            |          |                 | Т               | able 6. Strat    | egy evaluatio | n statistics f           | or XLE           |               |           |       |
|----------------------------|----------|-----------------|-----------------|------------------|---------------|--------------------------|------------------|---------------|-----------|-------|
|                            |          | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA2          | EMA <sub>1</sub>         | EMA <sub>2</sub> | MACO          | WMACO     | EMACO |
|                            |          | •               |                 |                  | 2             | n1=229                   | 7 -              |               |           |       |
| $k_1 = 20$                 | TR       | 0.50            | -0.27           | 0.33             | 0.17          | 0.53                     | -0.35            | 0.54          | 0.30      | 0.32  |
| $k_2 = 50$                 | AR       | 0.08            | -0.04           | 0.07             | 0.02          | 0.08                     | -0.05            | 0.06          | 0.03      | 0.03  |
|                            | SD       | -0.01           | 0.00            | 0.00             | 0.00          | 0.01                     | 0.01             | -0.01         | -0.01     | 0.00  |
|                            | SR       | 0.31            | -0.17           | 0.30             | 0.11          | 0.32                     | -0.21            | 0.27          | 0.12      | 0.13  |
|                            | MD       | -0.52           | 0.26            | 0.10             | -0.15         | -0.43                    | 0.36             | -0.20         | -0.26     | -0.07 |
|                            | MDD      | -372            | -36             | -833             | 162           | -223                     | 334              | -52           | 7         | -495  |
| $k_1 = 20$                 | TR       | 0.50            | 0.03            | 0.33             | 0.13          | 0.53                     | -0.36            | -0.10         | 0.68      | -0.34 |
| $k_2 = 100$                | AR       | 0.08            | 0.00            | 0.07             | 0.02          | 0.08                     | -0.03            | -0.01         | 0.05      | -0.02 |
|                            | SD       | -0.01           | 0.00            | 0.00             | 0.00          | 0.01                     | 0.00             | 0.00          | 0.00      | 0.00  |
|                            | SR       | 0.31            | -0.02           | 0.30             | 0.08          | 0.32                     | -0.11            | -0.04         | 0.20      | -0.09 |
|                            | MD       | -0.52           | 0.06            | 0.10             | -0.04         | -0.43                    | 0.11             | 0.10          | -0.31     | 0.29  |
|                            | MDD      | -372            | 97              | -833             | 11            | -223                     | 77               | 36            | -473      | 38    |
| $k_1 = 50$                 | TR       | -0.27           | -0.14           | 0.17             | -0.09         | -0.38                    | 0.61             | 0.15          | 0.43      | -0.39 |
| $k_2 = 200$                | AR       | -0.04           | -0.01           | 0.02             | -0.01         | -0.05                    | 0.03             | -0.01         | 0.01      | -0.04 |
|                            | SD       | 0.00            | 0.01            | 0.00             | 0.00          | 0.01                     | 0.01             | 0.02          | 0.00      | 0.08  |
|                            | SR       | -0.17           | -0.07           | 0.11             | -0.04         | -0.23                    | 0.11             | -0.06         | 0.03      | -0.35 |
|                            | MD       | 0.26            | -0.04           | -0.15            | 0.05          | 0.38                     | -0.20            | 0.24          | 0.01      | 1.04  |
|                            | MDD      | -36             | -2              | 162              | 81            | 347                      | -60              | 204           | 104       | 247   |
| 1. 20                      | TR       | 0.14            | -0.37           | 0.01             | -0.25         | n1=78<br>0.18            | -0.27            | 0.07          | 0.03      | -0.02 |
| $k_1 = 20$<br>$k_2 = 50$   | AR       | 0.14            | -0.37           | 0.01             | -0.23         | 0.18                     | -0.27            | 0.07          | 0.03      | -0.02 |
| $k_2 = 30$                 | SD       | 0.09            | 0.00            | -0.01            | 0.00          | 0.00                     | -0.01            | -0.02         | -0.02     | -0.01 |
|                            | SR       | 0.00            | -0.86           | 0.04             | -0.45         | 0.38                     | -0.66            | 0.02          | 0.02      | -0.12 |
|                            | MD       | -0.52           | 0.56            | 0.04             | 0.04          | -0.43                    | 0.33             | -0.05         | -0.34     | 0.07  |
|                            | MDD      | -0.52           | 5               | 11               | 31            | -30                      | 17               | -146          | -39       | -88   |
| $k_1 = 20$                 | TR       | 0.14            | -0.09           | 0.01             | -0.12         | 0.18                     | -0.05            | -0.25         | 0.01      | -0.13 |
| $k_1 = 100$<br>$k_2 = 100$ | AR       | 0.09            | -0.05           | 0.01             | -0.08         | 0.13                     | -0.03            | -0.15         | 0.00      | -0.09 |
|                            | SD       | 0.00            | 0.00            | -0.01            | -0.01         | 0.00                     | 0.00             | -0.01         | -0.01     | -0.01 |
|                            | SR       | 0.28            | -0.20           | 0.04             | -0.32         | 0.38                     | -0.10            | -0.50         | -0.02     | -0.35 |
|                            | MD       | -0.52           | 0.07            | 0.16             | 0.15          | -0.43                    | 0.04             | 0.10          | -0.01     | 0.23  |
|                            | MDD      | -9              | 39              | 11               | 8             | -30                      | 181              | 247           | -37       | 36    |
| $k_1 = 50$                 | TR       | -0.37           | -0.05           | -0.25            | -0.13         | -0.25                    | -0.16            | -0.27         | -0.25     | -0.33 |
| $k_2 = 200$                | AR       | -0.24           | -0.03           | -0.13            | -0.07         | -0.17                    | 0.05             | -0.13         | -0.14     | -0.14 |
| -                          | SD       | 0.00            | -0.01           | 0.00             | -0.01         | 0.00                     | 0.29             | -0.03         | -0.02     | 0.24  |
|                            | SR       | -0.86           | -0.10           | -0.45            | -0.28         | -0.67                    | 0.45             | -0.45         | -0.49     | -0.45 |
|                            | MD       | 0.56            | -0.04           | 0.04             | 0.05          | 0.33                     | 0.68             | 0.11          | 0.16      | 0.80  |
|                            | MDD      | 5               | -4              | 31               | 114           | 17                       | 200              | 339           | 193       | 437   |
|                            |          |                 |                 |                  |               | ge across n <sub>1</sub> |                  |               |           |       |
| $k_1 = 20$                 | TR       | 0.30            | -0.33           | 0.22             | -0.11         | 0.27                     | -0.35            | 0.43          | 0.15      | 0.15  |
| $k_2 = 50$                 | AR       | 0.07            | -0.09           | 0.07             | -0.04         | 0.03                     | -0.11            | 0.13          | -0.01     | 0.00  |
|                            | SD       | 0.00            | 0.00            | 0.00             | 0.00          | 0.01                     | 0.00             | 0.00          | -0.01     | -0.01 |
|                            | SR       | 0.28            | -0.47           | 0.19             | -0.18         | 0.32                     | -0.42            | 0.23          | 0.10      | 0.05  |
|                            | MD       | -0.37           | 0.36            | 0.09             | 0.02          | -0.30                    | 0.30             | -0.17         | -0.21     | -0.01 |
| 1 20                       | MDD      | -107            | 27              | -253             | 167           | -44                      | 176              | -107          | -54       | -247  |
| $k_1 = 20$                 | TR       | 0.30            | 0.11            | 0.22             | 0.03          | 0.27                     | -0.20            | -0.11         | 0.43      | -0.21 |
| $k_2 = 100$                | AR<br>SD | 0.07<br>0.00    | 0.04<br>0.01    | 0.07<br>0.00     | 0.00          | 0.03 0.01                | -0.05            | 0.00          | 0.07      | -0.07 |
|                            | SR       | 0.00            | 0.01            | 0.00             | 0.00<br>0.01  | 0.01                     | 0.00<br>-0.23    | 0.00<br>-0.02 | 0.00 0.26 | 0.00  |
|                            | MD       | -0.37           | 0.15            | 0.25             | 0.01          | -0.30                    | -0.23            | -0.02         | -0.17     | -0.32 |
|                            | MDD      | -0.37           | 57              | -253             | -6            | -0.50                    | 83               | 79            | -0.17     | 46    |
| $k_1 = 50$                 | TR       | -0.33           | 0.06            | -2.55            | -0            | -0.36                    | 0.20             | -0.09         | 0.07      | -0.34 |
| $k_1 = 50$<br>$k_2 = 200$  | AR       | -0.33           | 0.06            | -0.11            | 0.01          | -0.30                    | 0.20             | -0.09         | -0.01     | 0.12  |
| ~2 = 200                   | SD       | 0.09            | 0.00            | 0.04             | 0.02          | 0.00                     | 0.07             | 0.03          | 0.00      | 0.12  |
|                            | SR       | -0.28           | -0.04           | -0.05            | -0.01         | -0.31                    | 0.11             | -0.12         | -0.02     | -0.38 |
|                            | MD       | 0.36            | -0.04           | 0.02             | 0.03          | 0.30                     | 0.05             | 0.15          | 0.06      | 0.68  |
|                            | MDD      | 27              | -5              | 167              | 63            | 179                      | 19               | 205           | 118       | 217   |
|                            |          |                 |                 |                  |               | •••                      | • ·              |               |           |       |

and *EMA*<sub>1</sub> denoting weighted and exponential moving averages respectively; (3) *MACO*, *WMACO* and *EMACO* denote the moving averages cross-over strategies; (4) *TR* is the difference in total return, *AR* is the difference in annualized return, *SD* is the difference in annualized std. deviation, *SR* is the difference in annualized Sharpe ratios, *MD* is the maximum drawdown and *MDD* is the maximum drawdown duration (in days).

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2) MA<sub>i</sub> denotes the price cross-over strategy based on k<sub>i</sub> with WMA<sub>i</sub>

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )4 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )4 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| $ k_1 = 20 \\ k_2 = 100 \\ k_2 = 50 \\ k_1 = 50 \\ k_2 = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  |
| $ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} \mathrm{MD} & 0.00 & 0.10 & -0.08 & -0.07 & 0.07 & 0.07 & -0.02 & 0.04 & -0.0 \\ & \mathrm{MDD} & -54 & 130 & -175 & 1 & -65 & -24 & 128 & 42 & -1 \\ \hline \mathrm{TR} & 0.02 & -0.02 & 0.07 & 0.23 & 0.06 & 0.47 & 0.32 & 0.29 & -0.0 \\ & \mathrm{AR} & 0.00 & -0.01 & 0.02 & 0.03 & 0.01 & 0.05 & 0.02 & 0.03 & -0.0 \\ & \mathrm{SD} & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mathrm{SD} & 0.01 & 0.00 & 0.06 & 0.17 & 0.04 & 0.28 & 0.10 & 0.14 & -0.0 \\ & \mathrm{MDD} & 0.54 & -27 & -175 & -40 & -65 & -31 & 60 & 1 & -2 \\ & \mathrm{AR} & -0.03 & 0.00 & 0.01 & 0.013 & 0.04 & -0.07 & -0.32 & -0.0 \\ & \mathrm{MDD} & -54 & -27 & -175 & -40 & -65 & -31 & 60 & 1 & -2 \\ & \mathrm{AR} & -0.03 & 0.00 & 0.01 & 0.013 & 0.04 & -0.07 & 0.009 & -0.0 \\ & \mathrm{SD} & 0.00 & 0.02 & 0.01 & 0.00 & 0.01 & -0.01 & -0.02 & -0.0 \\ & \mathrm{SD} & 0.00 & 0.02 & 0.01 & 0.00 & 0.01 & 0.01 & 0.00 & 0.01 & 0.0 \\ & \mathrm{AR} & -0.03 & 0.00 & 0.10 & 0.13 & 0.04 & -0.07 & 0.00 & -0.09 & -0.0 \\ & \mathrm{SR} & -0.16 & -0.04 & 0.06 & 0.09 & 0.02 & -0.09 & -0.05 & -0.13 & -0.0 \\ & \mathrm{MD} & 0.10 & -0.03 & -0.07 & -0.12 & 0.07 & -0.12 & 0.03 & 0.01 & 0.2 \\ & \mathrm{AR} & -0.03 & -0.07 & -0.02 & -0.09 & -0.05 & -0.13 & -0.0 \\ & \mathrm{MD} & 0.10 & -0.03 & -0.07 & -0.12 & 0.07 & -0.12 & 0.03 & 0.01 & 0.2 \\ & \mathrm{MD} & 0.3 & -16 & 1 & -22 & -24 & -51 & 195 & 157 & 33 \\ & \mathrm{MD} & 0.3 & -0.07 & 0.00 & -0.03 & -0.16 & -0.08 & 0.06 & 0.0 \\ & \mathrm{MD} & 0.03 & -0.07 & 0.00 & -0.03 & -0.16 & -0.05 & -0.08 & 0.06 & 0.0 \\ & \mathrm{SD} & 0.01 & -0.01 & 0.00 & 0.01 & 0.01 & -0.01 & -0.02 & -0.0 \\ & \mathrm{SD} & 0.01 & -0.01 & 0.00 & 0.01 & 0.01 & -0.01 & -0.02 & -0.0 \\ & \mathrm{SD} & 0.01 & -0.01 & 0.00 & 0.01 & 0.01 & -0.03 & -0.05 & 0.03 & 0.07 \\ & \mathrm{MD} & 0.5 & 0.08 & -0.03 & -0.06 & -0.51 & -0.20 & 023 & 0.21 & 0.0 \\ & \mathrm{MD} & 0.5 & 0.08 & -0.03 & -0.06 & -0.51 & -0.20 & 0.23 & 0.21 & 0.0 \\ \end{array} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| $ \begin{array}{c} \displaystyle \underset{k_{2} = 50}{\text{HDD}} & \frac{-54}{18} & \frac{130}{-175} & \frac{-175}{1} & \frac{-65}{-64} & \frac{-24}{128} & \frac{-42}{-11} & \frac{-175}{18} & \frac{-42}{18} & \frac{-175}{18} $ | 2  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17 |
| $k_1 = 50$ $k_2 = 50$ $k_1 = 50$ $k_1 = 50$ $k_2 = 50$ $K_1 = 0$ $K_1 = 0$ $K_1 = 0$ $K_1 = 0$ $K_2 = 50$ $K_2 = 0$ $K_2 = 0$ $K_1 = 0$ $K_1 = 0$ $K_2 = 0$ $K_1 = 0$ $K_1 = 0$ $K_2 = 0$ $K_1 = 0$ $K_1 = 0$ $K_2 = 0$ $K_1 = 0$ $K_1 = 0$ $K_2 = 0$ $K_1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )2 |
| $ \begin{array}{c} \begin{array}{c} & \mbox{MD} & 0.00 & -0.11 & -0.08 & -0.23 & 0.07 & -0.10 & -0.07 & -0.32 & -0.07 \\ \hline \mbox{MDD} & -54 & -27 & -175 & -40 & -65 & -31 & 60 & 1 & 22 \\ \hline \mbox{TR} & -0.23 & 0.00 & 0.10 & 0.01 & 0.04 & -0.07 & 0.00 & -0.09 & -0.07 \\ \hline \mbox{AR} & -0.03 & 0.00 & 0.01 & 0.02 & 0.00 & -0.01 & -0.01 & -0.02 & -0.0 \\ \hline \mbox{SR} & -0.16 & -0.04 & 0.06 & 0.09 & 0.02 & -0.09 & -0.05 & -0.13 & -0.07 \\ \hline \mbox{MD} & 0.10 & -16 & 1 & -22 & -24 & -51 & 195 & 157 & 33 \\ \hline \mbox{MD} & 0.10 & -0.03 & -0.07 & -0.12 & 0.07 & -0.12 & 0.03 & 0.01 & 0.01 \\ \hline \mbox{MD} & 0.10 & -0.01 & 0.00 & -0.03 & -0.16 & -0.05 & 0.03 & 0.06 \\ \hline \mbox{K} & -0.16 & -0.04 & 0.00 & -0.03 & -0.16 & -0.05 & 0.03 & 0.06 \\ \hline \mbox{MD} & 0.10 & -0.01 & 0.00 & -0.03 & -0.16 & -0.05 & 0.03 & 0.06 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & 0.021 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & 0.021 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.01 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.0 \\ \hline \mbox{SR} & -0.14 & -0.21 & -0.03 & -0.06 & -0.51 & -0.20 & -0.23 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 & -0.05 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1  |
| $ \begin{array}{c} \underset{k_{2}=50}{k_{2}=50} & \frac{\text{MDD} - 54}{\text{TR}} & \frac{-27}{-0.175} & \frac{-160}{-0.18} & \frac{-65}{-0.11} & \frac{-60}{-0.00} & \frac{-31}{-0.00} & \frac{-00}{-0.00} & -0$                                                                                       | 15 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 |
| $ k_1 = 20 \\ k_2 = 50 \\ k_2 = 50$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1  |
| SD         0.01         -0.01         0.00         0.01         0.00         -0.01         -0.01         -0.02         -0.0           SR         -0.14         -0.21         -0.03         -0.06         -0.51         -0.23         0.21         0.7           MD         0.05         0.08         -0.07         0.06         0.12         0.05         -0.05         -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 |
| MD 0.05 0.08 -0.03 -0.07 0.06 0.12 0.05 -0.05 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )9 |
| MDD -42 129 -15 -8 10 147 -20 10 -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7  |
| $k_1 = 20$ TR -0.05 -0.02 0.00 0.13 -0.16 -0.07 -0.13 0.12 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )2 |
| $k_2 = 100$ AR -0.03 -0.01 0.00 0.10 -0.13 -0.05 -0.10 0.09 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )2 |
| SD 0.01 0.00 0.00 -0.01 0.00 0.00 -0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0  |
| SR -0.14 -0.08 -0.03 0.51 -0.51 -0.27 -0.60 0.44 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 |
| MD 0.05 -0.04 -0.03 -0.17 0.06 0.00 0.04 -0.16 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| MDD -42 2 -15 -73 10 64 91 -179 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| $k_1 = 50$ TR -0.07 -0.16 -0.03 0.04 -0.01 -0.34 -0.01 0.09 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| $k_2 = 200$ AR -0.04 -0.13 -0.02 0.03 0.00 -0.18 0.02 0.07 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| SD -0.01 0.00 0.01 0.00 -0.01 0.21 0.03 0.03 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| SR -0.21 -0.77 -0.06 0.19 0.00 -0.66 0.09 0.37 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| MD 0.08 0.12 -0.07 -0.04 0.12 0.64 0.09 0.10 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| MDD 129 210 -8 -2 149 371 223 23 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0  |
| Average across $n_1$ given $k_1, k_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| $k_1 = 20$ TR 0.00 -0.11 0.06 0.04 -0.07 -0.02 0.00 -0.12 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| $k_2 = 50$ AR 0.01 -0.01 0.02 0.00 -0.05 0.00 -0.01 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| SD 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| SR -0.07 -0.19 0.05 0.01 -0.17 -0.08 -0.09 -0.10 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| MD 0.04 0.06 -0.04 -0.05 0.07 0.05 -0.01 0.00 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| MDD -24 96 -89 8 -20 24 54 -15 -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| $k_1 = 20$ TR 0.00 0.04 0.06 0.18 -0.07 0.16 0.24 0.24 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| $k_2 = 100$ AR 0.01 0.02 0.02 0.06 -0.05 0.00 0.01 0.07 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| SD 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| SR -0.07 -0.03 0.05 0.29 -0.17 0.08 -0.08 0.25 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| MD 0.04 -0.06 -0.04 -0.15 0.07 -0.05 -0.03 -0.20 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| MDD -24 -13 -89 -52 -20 -20 76 -28 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |
| $k_1 = 50$ TR -0.11 0.03 0.04 0.12 0.01 -0.10 0.12 0.13 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| $k_2 = 200$ AR -0.01 0.00 0.00 0.06 0.01 -0.10 0.05 0.06 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| SD 0.01 0.02 0.01 0.01 0.00 0.06 0.01 0.02 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| SR -0.19 -0.01 0.04 0.06 0.00 0.05 -0.05 -0.07 -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| MD 0.06 0.02 -0.05 -0.08 0.05 0.12 0.04 0.03 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |
| MDD 96 45 8 -12 24 64 169 97 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

Table 7. Strategy evaluation statistics for EWJ

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|              |           |                 | Т               | able 8. Strat    | egy evaluatio    | on statistics f  | for IYR          |       |       |             |
|--------------|-----------|-----------------|-----------------|------------------|------------------|------------------|------------------|-------|-------|-------------|
|              |           | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> | EMA <sub>1</sub> | EMA <sub>2</sub> | MACO  | WMACO | EMACO       |
|              |           |                 |                 |                  |                  | n1=229           |                  |       |       |             |
| $k_1 = 20$   | TR        | 1.43            | -0.05           | 0.51             | 0.26             | 0.65             | 0.51             | 1.46  | -0.52 | 0.19        |
| $k_2 = 50$   | AR        | 0.08            | -0.01           | 0.05             | 0.01             | 0.06             | 0.03             | 0.08  | -0.05 | 0.00        |
| -            | SD        | -0.03           | 0.00            | -0.04            | 0.01             | -0.03            | 0.00             | -0.03 | -0.02 | -0.01       |
|              | SR        | 0.38            | -0.04           | 0.22             | 0.01             | 0.28             | 0.15             | 0.44  | -0.14 | 0.04        |
|              | MD        | -0.70           | 0.10            | -0.42            | 0.22             | -0.10            | -0.17            | -0.52 | 0.62  | 0.01        |
|              | MDD       | -211            | 122             | -3               | 36               | -3               | -89              | -139  | 258   | 54          |
| $k_1 = 20$   | TR        | 1.43            | -0.06           | 0.51             | -0.19            | 0.65             | -0.21            | 0.96  | -0.22 | -0.03       |
| $k_2 = 100$  | AR        | 0.08            | -0.01           | 0.05             | -0.02            | 0.06             | -0.01            | 0.03  | -0.04 | -0.02       |
| 2            | SD        | -0.03           | 0.00            | -0.04            | 0.00             | -0.03            | -0.01            | -0.02 | -0.02 | -0.01       |
|              | SR        | 0.38            | -0.06           | 0.22             | -0.07            | 0.28             | -0.03            | 0.21  | -0.11 | -0.08       |
|              | MD        | -0.70           | 0.03            | -0.42            | 0.37             | -0.10            | -0.02            | -0.20 | 0.27  | 0.08        |
|              | MDD       | -211            | 39              | -3               | -18              | -3               | -23              | 85    | 158   | 105         |
| $k_1 = 50$   | TR        | -0.05           | 0.39            | 0.26             | -0.07            | 0.51             | -0.24            | -2.00 | -0.49 | -2.12       |
| $k_2 = 200$  | AR        | -0.01           | 0.02            | 0.01             | -0.01            | 0.03             | -0.03            | -0.12 | -0.05 | -0.16       |
| 2            | SD        | 0.00            | 0.01            | 0.01             | 0.00             | 0.00             | 0.01             | 0.02  | 0.00  | 0.13        |
|              | SR        | -0.04           | 0.07            | 0.01             | -0.04            | 0.15             | -0.17            | -0.66 | -0.28 | -0.98       |
|              | MD        | 0.10            | -0.15           | 0.22             | 0.03             | -0.17            | 0.20             | 0.57  | 0.04  | 3.44        |
|              | MDD       | 122             | -2              | 36               | -13              | -89              | 158              | 560   | 223   | 637         |
|              |           |                 |                 |                  |                  | n1=78            | 7                |       |       |             |
| $k_1 = 20$   | TR        | 0.88            | 0.41            | 0.20             | 0.39             | 0.35             | 0.02             | 0.79  | 0.35  | 0.39        |
| $k_2^1 = 50$ | AR        | 0.20            | 0.18            | 0.09             | 0.17             | 0.15             | 0.00             | 0.26  | 0.10  | 0.24        |
| 2            | SD        | -0.01           | 0.07            | -0.02            | 0.04             | 0.00             | 0.00             | 0.07  | 0.05  | 0.01        |
|              | SR        | 0.49            | 0.25            | 0.23             | 0.29             | 0.38             | 0.00             | 0.41  | 0.11  | 0.75        |
|              | MD        | -0.02           | 0.01            | 0.06             | -0.01            | 0.04             | -0.02            | 0.06  | 0.02  | -0.08       |
|              | MDD       | 3               | -27             | -19              | -3               | 2                | 2                | 42    | 21    | -14         |
| $k_1 = 20$   | TR        | 0.54            | 0.45            | 0.20             | 0.35             | 0.35             | 0.02             | 0.96  | 0.51  | -0.01       |
| $k_2 = 100$  | AR        | 0.20            | 0.17            | 0.09             | 0.17             | 0.15             | 0.02             | 0.36  | 0.20  | 0.00        |
|              | SD        | -0.01           | 0.08            | -0.02            | 0.07             | 0.00             | 0.01             | 0.12  | 0.08  | 0.00        |
|              | SR        | 0.49            | 0.19            | 0.23             | 0.25             | 0.38             | 0.06             | 0.51  | 0.23  | -0.01       |
|              | MD        | -0.02           | 0.05            | 0.06             | -0.01            | 0.04             | -0.07            | -0.01 | 0.04  | 0.00        |
|              | MDD       | 3               | -7              | -19              | 1                | 2                | -15              | -22   | 26    | -2          |
| $k_1 = 50$   | TR        | 0.41            | 0.92            | 0.39             | 0.81             | -0.03            | 0.04             | 0.86  | 0.94  | -0.10       |
| $k_2 = 200$  | AR        | 0.18            | 0.22            | 0.17             | 0.27             | -0.02            | 0.05             | 0.19  | 0.33  | -0.07       |
|              | SD        | 0.07            | 0.15            | 0.04             | 0.12             | 0.00             | 0.01             | 0.15  | 0.15  | 0.00        |
|              | SR        | 0.25            | -0.02           | 0.29             | 0.30             | -0.08            | 0.15             | -0.14 | 0.29  | -0.28       |
|              | MD        | 0.01            | 0.00            | -0.01            | -0.02            | -0.02            | 0.00             | 0.00  | 0.00  | 0.00        |
|              | MDD       | -27             | 0               | -3               | -11              | 2                | -32              | 0     | 0     | 0           |
|              |           |                 |                 |                  |                  |                  | given $k_1, k_2$ |       |       |             |
| $k_1 = 20$   | TR        | 1.01            | 0.09            | 0.38             | 0.27             | 0.42             | 0.28             | 0.93  | -0.29 | 0.26        |
| $k_2 = 50$   | AR        | 0.19            | 0.05            | 0.09             | 0.07             | 0.07             | 0.04             | 0.15  | -0.04 | 0.06        |
|              | SD        | -0.03           | 0.01            | -0.05            | 0.02             | -0.04            | -0.01            | -0.01 | -0.01 | -0.01       |
|              | SR        | 0.55            | 0.02            | 0.27             | 0.07             | 0.20             | 0.19             | 0.45  | -0.22 | 0.07        |
|              | MD        | -0.55           | 0.01            | -0.28            | 0.11             | 0.04             | -0.18            | -0.37 | 0.42  | -0.01       |
| 1 20         | MDD       | -178            | 27              | -15              | -7               | 2                | -92              | -130  | 170   | 21          |
| $k_1 = 20$   | TR        | 1.01            | 0.10            | 0.38             | -0.07            | 0.42             | -0.09            | 0.84  | -0.02 | -0.04       |
| $k_2 = 100$  | AR        | 0.19            | 0.02            | 0.09             | 0.00             | 0.07             | -0.01            | 0.15  | 0.02  | -0.03       |
|              | SD        | -0.03           | 0.02            | -0.05            | 0.02             | -0.04            | -0.01            | 0.02  | 0.01  | 0.00        |
|              | SR        | 0.54            | -0.02           | 0.26             | -0.07            | 0.25             | -0.02            | 0.38  | -0.01 | -0.11       |
|              | MD        | -0.55           | 0.04            | -0.28            | 0.27             | 0.04             | -0.02            | -0.15 | 0.14  | 0.09        |
| 1. 50        | MDD       | -178            | 23              | -15              | 20               | 2                | 1                | -12   | 82    | 68          |
| $k_1 = 50$   | TR        | 0.09            | 0.38            | 0.27             | 0.20             | 0.26             | -0.14            | -0.75 | 0.10  | -1.02       |
| $k_2 = 200$  | AR<br>SD  | 0.05            | 0.04            | 0.07             | 0.07             | 0.02             | -0.01            | -0.09 | 0.05  | -0.15       |
|              | SD<br>SR  | 0.01            | 0.05            | 0.02             | 0.03             | 0.00             | 0.01             | 0.05  | 0.04  | 0.13        |
|              |           | -0.05           | 0.06            | 0.02             | -0.02            | 0.15             | -0.20            | -0.60 | -0.20 | -0.91       |
|              | MD<br>MDD | 0.01<br>27      | -0.03<br>6      | 0.11<br>-7       | 0.01             | -0.15            | 0.10<br>71       | 0.38  | 0.03  | 1.65<br>394 |
|              | MDD       | 21              | U               | - /              | -14              | -44              | /1               | 346   | 133   | 394         |

Table 8. Strategy evaluation statistics for IYR

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |                 | Tab             | le 9. Strateg    | y evaluation :   | statistics for | EUR/USD |       |       |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|-----------------|-----------------|------------------|------------------|----------------|---------|-------|-------|-------|
| $ \begin{array}{c} k_1 = 5 \\ k_2 = 20 \end{array} \begin{array}{c} \mbox{TR} & 0.30 & 0.35 & 0.02 & 0.07 & 0.26 & 0.17 & 0.55 & 0.29 & 0.17 \\ k_2 = 20 \end{array} \begin{array}{c} \mbox{AR} & 0.03 & 0.03 & 0.01 & 0.01 & 0.01 & 0.01 & 0.04 & 0.03 & 0.01 \\ \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ \mbox{MD} & 0.03 & -0.01 & -0.01 & 0.01 & 0.01 & 0.04 & 0.02 & 0.00 \\ \mbox{MD} & -164 & 423 & -64 & -7 & 106 & -162 & -123 & -105 & -58 \\ \mbox{MD} & -164 & 423 & -64 & -7 & 106 & -162 & +123 & -105 & -58 \\ \mbox{AR} & 0.04 & 0.03 & 0.07 & -0.01 & 0.01 & 0.01 & 0.01 & 0.03 & -0.02 \\ \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ \mbox{SR} & 0.39 & 0.34 & 0.76 & -0.14 & 0.17 & 0.17 & 0.17 & 0.21 & 0.37 & -0.01 \\ \mbox{MD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ \mbox{K} & 180 & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ \mbox{K} & 180 & -35 & 0.13 & -0.07 & 0.05 & 0.07 & -0.01 & 0.00 & 0.00 & 0.00 \\ \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.02 \\ \mbox{MD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ \mbox{K} & 18 & 0.33 & 0.01 & -0.01 & 0.01 & -0.01 & -0.02 & 0.01 \\ \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & 0.00 \\ \mbox{SR} & 0.34 & 0.10 & -0.14 & -0.09 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \mbox{K} & 18 & 0.49 & 0.14 & 0.02 & 0.08 & 0.00 & 0.01 & -0.01 & 0.00 \\ \mbox{SR} & 0.18 & 0.49 & 0.14 & 0.02 & 0.08 & 0.00 & 0.11 & 0.04 & 0.05 \\ \mbox{K} & 0.18 & 0.49 & 0.14 & 0.02 & 0.05 & 0.00 & 0.07 & -0.01 & 0.01 \\ \mbox{K} & 1 = 10 \\ \mbox{R} & 0.05 & 0.04 & 0.10 & 0.02 & 0.05 & 0.00 & 0.07 & -0.04 & 0.01 \\ \mbox{K} & 0.05 & 0.04 & 0.10 & 0.02 & 0.05 & 0.00 & 0.07 & -0.04 & 0.01 \\ \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.07 & 0.00 & 0.03 & 0.05 & -0.06 & 0.06 \\ \mbox{MD} & -0.22 & -0.05 & -0.01 & -0.02 & 0.01 & -0.05 & -0.01 & 0.01 \\ \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.07 & 0.00 & 0.03 & 0.05 & -0.06 & -0.01 \\ \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.07 & 0.00 & 0.03 & 0.05$                                                                                                                      |                          |     | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> |                |         | MACO  | WMACO | EMACO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.29 & 0.34 & 0.05 & 0.014 & 0.019 & 0.06 & 0.044 & 0.029 & 0.010 \\ & \mbox{MD} & -164 & 423 & -64 & -7 & 106 & -162 & -123 & -105 & -58 \\ \hline & \mbox{TR} & 0.33 & 0.35 & 0.69 & -0.07 & 0.17 & 0.17 & 0.21 & 0.37 & -0.01 \\ & \mbox{AR} & 0.04 & 0.03 & 0.07 & -0.01 & 0.01 & 0.01 & 0.00 & 0.00 & 0.00 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.39 & 0.34 & 0.76 & -0.14 & 0.17 & 0.16 & 0.10 & 0.28 & -0.11 \\ & \mbox{MD} & -102 & -0.01 & -0.10 & 0.05 & 0.01 & 0.00 & 0.02 & 0.01 & 0.07 \\ & \mbox{MD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ & \mbox{MD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.02 \\ & \mbox{AR} & 0.03 & 0.01 & -0.01 & -0.05 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & 0.00 \\ & \mbox{SR} & 0.34 & 0.10 & -0.14 & -0.09 & 0.17 & -0.19 & 0.15 & -0.19 & 0.01 \\ & \mbox{MD} & -0.01 & 0.02 & 0.05 & 0.00 & -0.01 & -0.01 & 0.00 \\ & \mbox{SR} & 0.34 & 0.10 & -0.01 & 0.02 & 0.08 & 0.00 & 0.11 & -0.04 & -0.02 \\ & \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ & \mbox{R} & 18 & 0.49 & 0.14 & 0.03 & 0.00 & 0.01 & -0.01 & 0.01 \\ & \mbox{SR} & -0.18 & 0.49 & 0.14 & 0.02 & 0.05 & 0.00 & 0.11 & 0.04 & 0.05 \\ & \mbox{R} & 0.48 & 0.05 & 0.01 & 0.02 & 0.05 & 0.00 & 0.07 & 0.09 & -0.01 \\ & \mbox{R} & 0.55 & 0.49 & 1.30 & 0.35 & 0.06 & 0.07 & -0.09 & 0.01 \\ & \mbox{R} & 0.55 & 0.49 & 1.30 & 0.35 & 0.05 & -0.09 & 0.88 & 1.18 & -0.58 \\ & \mbox{MD} & -0.22 & -0.05 & -0.01 & -0.02 & -0.01 & -0.01 & 0.01 \\ & \mbox{R} & 0.49 & -0.76 & 0.35 & -0.97 & 0.09 & 0.35 & -0.06 & 0.06 \\ & \mbox{MD} & -0.22 & -0.05 & -0.01 & 0.02 & 0.05 & -0.01 & 0.02 & 0.01 & 0.00 \\ & \mbox{R} & 0.49 & -0.76 & 0.35 & -0.07 & 0.03 & 0.03 & 0.01 & 0.00 \\ & \mbox & -0.2 & -0.02 & -$                                                                                                                                                              | $k_1 = 5$                |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{SR} & 0.29 & 0.34 & -0.05 & -0.14 & 0.19 & 0.16 & 0.44 & 0.29 & 0.10 \\ & \mbox{MDD} & -1.64 & -423 & -64 & -7 & 106 & -1.62 & -123 & -105 & -58 \\ & \mbox{MDD} & -1.64 & -423 & -64 & -7 & 106 & -1.62 & -123 & -105 & -58 \\ & \mbox{AR} & 0.04 & 0.03 & 0.07 & -0.01 & 0.01 & 0.01 & 0.01 & 0.03 & -0.02 \\ & \mbox{SR} & 0.39 & 0.34 & 0.76 & -0.14 & 0.17 & 0.17 & 0.21 & 0.37 & -0.01 \\ & \mbox{MDD} & -1.98 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ & \mbox{MDD} & -1.98 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ & \mbox{MDD} & -1.98 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ & \mbox{R} & 0.33 & 0.13 & -0.07 & 0.05 & 0.17 & -0.11 & 0.19 & -0.02 & 0.00 \\ & \mbox{SR} & 0.33 & 0.01 & -0.01 & -0.01 & -0.02 & 0.01 & -0.02 & 0.00 \\ & \mbox{SR} & 0.34 & 0.10 & -0.01 & -0.01 & -0.02 & 0.01 & -0.02 & 0.00 \\ & \mbox{SR} & 0.34 & 0.10 & -0.14 & -0.09 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ & \mbox{MD} & -0.01 & 0.02 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ & \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -163 & -103 & -0.04 & -0.02 \\ & \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -151 & 0.04 & 0.04 \\ & \mbox{SR} & 0.18 & 0.49 & 0.10 & 0.02 & 0.08 & 0.00 & 0.11 & 0.04 & 0.05 \\ & \mbox{R} & 0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 1.51 & 0.48 & 0.41 \\ & \mbox{MD} & 0.00 & -0.02 & -0.02 & -0.01 & -0.03 & -0.01 & -0.01 & 0.00 \\ & \mbox{SR} & 0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 0.15 & 0.04 & 0.04 \\ & \mbox{SR} & 0.18 & 0.49 & 0.14 & 0.35 & 0.05 & 0.00 & 0.07 & 0.09 & -0.01 \\ & \mbox{R} & 0.55 & 0.049 & 1.30 & 0.35 & -0.07 & 0.2 & 46 & 45 & 32 \\ & \mbox{R} & 1.8 & 0.49 & 0.10 & 0.02 & 0.05 & 0.00 & 0.07 & 0.09 & -0.01 \\ & \mbox{R} & 0.55 & 0.49 & 1.30 & 0.35 & 0.06 & 0.07 & 0.09 & -0.01 \\ & \mbox{R} & 0.55 & 0.49 & 1.30 & 0.35 & 0.06 & 0.07 & 0.09 & -0.01 \\ & \mbox{R} & 0.55 & 0.49 & 1.30 & 0.35 & 0.06 & 0.07 & 0.08 & -0.14 \\ & \mbox{R} & 0.05 & 0.02 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.05 & 0.04 & 0.10 & 0.02 & 0.05 & -0.06 & 0.05 \\ & \\mbox{R} & 0.05 & 0.04 & 0.01 & 0.0$                                                                                                                                                                   | $k_2 = 20$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 0 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 0 \\ k_2 = 20 \\ k_1 = 0 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = $     |                          |     |                 |                 |                  |                  |                |         |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{SP} & \mbox{SP} & \mbox{O} &$                                                                                                                                                                                              | $k_1 = 10$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & & \mbox{SR} & 0.39 & 0.34 & 0.76 & -0.14 & 0.17 & 0.16 & 0.10 & 0.38 & -0.11 \\ & & \mbox{MD} & -0.02 & -0.01 & -0.10 & 0.05 & 0.01 & 0.00 & 0.02 & 0.01 & 0.07 \\ & & \mbox{MD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ & & \mbox{TR} & 0.35 & 0.13 & -0.07 & 0.05 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ & & \mbox{SR} & 0.34 & 0.10 & -0.01 & -0.01 & 0.02 & 0.01 & -0.02 & 0.00 \\ & & \mbox{SR} & 0.34 & 0.10 & -0.01 & -0.01 & 0.02 & -0.01 & -0.01 & 0.00 \\ & & \mbox{SR} & 0.34 & 0.10 & -0.04 & -0.09 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ & & \mbox{MD} & -0.01 & 0.02 & 0.05 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ & & \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ & & \mbox{F} & \mbox{R} & 0.02 & 0.04 & 0.01 & 0.02 & 0.08 & 0.00 & 0.11 & 0.04 & 0.05 \\ & & \mbox{K} & \mbox{R} & 0.00 & -0.01 & 0.01 & 0.02 & 0.08 & 0.00 & 0.11 & 0.04 & 0.05 \\ & & \mbox{R} & -0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 1.51 & 0.04 & 0.04 \\ & \mbox{MD} & 0.00 & -0.01 & 0.01 & 0.01 & 0.00 & -0.01 & -0.01 & 0.00 \\ & \mbox{SR} & -0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 1.51 & 0.48 & 0.41 \\ & \mbox{MD} & 0.02 & -0.02 & -0.01 & -0.03 & -0.01 & -0.01 & 0.00 \\ & \mbox{SR} & 0.55 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.88 & 1.18 & -0.58 \\ & \mbox{MD} & -0.02 & -0.02 & -0.05 & -0.01 & -0.02 & -0.06 & 0.06 \\ & \mbox{MD} & -0.02 & -0.02 & -0.07 & 0.00 & 0.03 & 0.05 & -0.06 & 0.06 \\ & \mbox{MD} & -0.02 & -0.02 & -0.07 & 0.00 & 0.03 & 0.05 & -0.06 & 0.06 \\ & \mbox{MD} & -0.02 & 0.05 & -0.01 & -0.01 & 0.03 & 0.08 & -0.14 & 0.22 \\ & \mbox{R} & 0.49 & 0.76 & 0.35 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.88 & 1.18 & -0.58 \\ & \mbox{MD} & -0.02 & 0.05 & -0.01 & 0.00 & 0.03 & 0.05 & -0.06 & 0.06 \\ & \mbox{MD} & -0.02 & 0.05 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{R} & 0.49 & 0.76 & 0.35 & 0.49 & 0.10 & 0.03 & -0.01 & 0.02 & 0.05 & -0.06 \\ & \mbox{R} & 0.49 & 0.76 & 0.35 & 0.49 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{R} & 0.49 & 0.76 & 0.35 & 0.49 & 0.10 & 0.00 & 0.00 & 0.00 & 0.00 \\ $                                                                                                                                                                    | $k_2 = 20$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{MD} & -0.02 & -0.01 & -0.10 & 0.05 & 0.01 & 0.00 & 0.02 & 0.01 & 0.07 \\ & \mbox{MD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ \hline \mbox{TR} & 0.35 & 0.13 & -0.07 & 0.05 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ & \mbox{AR} & 0.03 & 0.01 & -0.01 & -0.01 & 0.01 & -0.02 & 0.00 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.02 & 0.00 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.02 & 0.00 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.02 & -0.01 \\ & \mbox{MD} & -0.01 & 0.02 & 0.05 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ & \mbox{MDD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \hline \mbox{R} & -0.02 & 0.05 & 0.01 & 0.04 & 0.01 & -0.01 & 0.04 & 0.05 \\ & \mbox{SD} & 0.00 & -0.01 & 0.01 & 0.02 & 0.08 & 0.00 & 0.11 & 0.04 & 0.05 \\ & \mbox{SD} & 0.00 & -0.01 & 0.01 & 0.00 & -0.01 & -0.01 & -0.01 & 0.01 \\ & \mbox{SD} & 0.00 & -0.01 & 0.01 & 0.00 & -0.01 & -0.01 & -0.01 & 0.01 \\ & \mbox{SD} & 0.00 & -0.01 & 0.01 & 0.03 & -0.01 & -0.06 & 0.01 & 0.01 \\ & \mbox{SD} & 0.00 & -0.01 & 0.01 & 0.02 & 0.05 & 0.00 & 0.07 & 0.09 & -0.01 \\ & \mbox{Ag} & \mbox{Ag} & \mbox{SD} & 0.00 & -0.01 & 0.00 & 0.01 & -0.01 & -0.01 & 0.01 \\ & \mbox{SD} & 0.00 & -0.01 & 0.00 & 0.01 & 0.00 & -0.01 & -0.01 & 0.01 \\ & \mbox{SD} & 0.00 & -0.01 & 0.00 & 0.01 & 0.00 & -0.01 & -0.01 & 0.01 \\ & \mbox{SD} & 0.00 & -0.01 & 0.00 & 0.01 & 0.00 & -0.01 & -0.01 & 0.01 \\ & \mbox{SR} & 0.55 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.88 & 1.18 & -0.58 \\ & \mbox{SD} & -0.01 & 0.00 & 0.01 & 0.00 & -0.01 & 0.03 & 0.08 & -0.08 & -0.14 \\ & \mbox{SD} & -0.01 & 0.00 & 0.01 & 0.00 & 0.03 & 0.08 & -0.08 & -0.14 \\ & \mbox{SD} & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.97 & -0.09 & 0.36 & 0.70 & -0.83 & -1.32 \\ & \mbox{MD} & -0.21 & 0.16 & 0.00 & -0.02 & 0.05 & -0.01 & 0.03 & -0.01 & 0.00 \\ & \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.97 & -0.09 & 0.36 & -0.06 & -0.13 \\ & \mbox{Ag} & \mbox{Ag} & 0.01 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 $                                                                                                                                                          |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} \begin{array}{c} \mbox{MDD} & -198 & -423 & -243 & -7 & -96 & -162 & 45 & -116 & 97 \\ \hline \mbox{TR} & 0.35 & 0.13 & -0.07 & 0.05 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ \mbox{AR} & 0.03 & 0.01 & -0.01 & -0.01 & 0.01 & -0.02 & 0.00 \\ \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & 0.00 \\ \mbox{SR} & 0.34 & 0.10 & -0.14 & -0.09 & 0.17 & -0.19 & 0.15 & -0.19 & 0.01 \\ \mbox{MDD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \mbox{MDD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \mbox{MDD} & -423 & 1 & 0.01 & 0.02 & 0.08 & 0.00 & 0.01 & 0.04 & 0.05 \\ \mbox{K} & 0.01 & 0.02 & 0.05 & 0.01 & 0.02 & 0.08 & 0.00 & -0.01 & -0.01 & 0.00 \\ \mbox{SR} & -0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 1.51 & 0.48 & 0.41 \\ \mbox{MD} & 0.00 & -0.02 & -0.02 & -0.01 & -0.03 & -0.01 & -0.01 & 0.00 \\ \mbox{SR} & -0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 1.51 & 0.48 & 0.41 \\ \mbox{MD} & 0.00 & -0.02 & -0.02 & -0.01 & -0.03 & -0.01 & -0.01 & 0.00 \\ \mbox{K} & 0.18 & 0.49 & 0.14 & 0.04 & 0.07 & -2 & -46 & 45 & 32 \\ \mbox{K} & 18 & 0.49 & 1.13 & 0.35 & 0.65 & -0.09 & 0.12 & -0.06 \\ \mbox{MD} & -2 & -9 & -8 & -3 & -107 & -2 & -46 & 45 & 32 \\ \mbox{K} & 0.55 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.12 & -0.06 \\ \mbox{MD} & -0.02 & -0.02 & -0.01 & -0.03 & -0.01 & -0.01 & 0.01 \\ \mbox{K} & 0.55 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.12 & -0.06 \\ \mbox{MD} & -0.02 & -0.05 & -0.01 & -0.02 & -0.05 & -0.06 & 0.06 \\ \mbox{MD} & -0.02 & 0.02 & -0.07 & 0.00 & 0.03 & 0.05 & -0.06 & 0.06 \\ \mbox{MD} & -0.02 & 0.05 & -0.01 & -0.01 & 0.03 & 0.08 & 1.18 & -0.58 \\ \mbox{MD} & -0.02 & 0.05 & -0.01 & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 \\ \mbox{K} & 0.49 & -0.76 & 0.35 & -0.97 & 0.09 & 0.36 & 0.70 & -0.33 \\ \mbox{K} & 0.49 & -0.76 & 0.35 & -0.97 & 0.09 & 0.36 & 0.70 & -0.33 \\ \mbox{K} & 0.49 & -0.76 & 0.35 & -0.97 & 0.09 & 0.36 & 0.70 & -0.33 \\ \mbox{K} & 0.49 & -0.76 & 0.35 & -0.97 & 0.09 & 0.36 & 0.70 & -0.33 \\ \mbox{K} & 0.49 & -0.76 & 0.35 & -0.97 & 0.09 & 0.36 & 0.70 & -0.33 \\ \mbox{K} & 0.10 & 0.00 & 0.00 & 0.00 & 0.$                                                                                                                                                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} k_1 = 20 \\ k_2 = 50 \end{array} \begin{array}{c} \mbox{TR} & 0.33 & 0.13 & -0.07 & 0.05 & 0.17 & -0.11 & 0.19 & -0.10 & 0.02 \\ k_2 = 50 \end{array} \begin{array}{c} \mbox{AR} & 0.03 & 0.01 & -0.01 & -0.01 & 0.01 & -0.02 & 0.00 \\ \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.02 & 0.00 \\ \mbox{SR} & 0.34 & 0.10 & -0.14 & -0.09 & 0.17 & -0.19 & 0.15 & -0.19 & 0.01 \\ \mbox{MD} & -0.01 & 0.02 & 0.05 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ \mbox{MDD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \mbox{K}_2 = 20 \end{array} \begin{array}{c} \mbox{AR} & -0.02 & 0.04 & 0.01 & 0.02 & 0.08 & 0.00 & 0.01 & 0.04 & 0.05 \\ \mbox{SR} & -0.02 & 0.05 & 0.01 & 0.04 & 0.01 & -0.01 & 0.00 & -0.01 \\ \mbox{SR} & -0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 0.15 & 0.04 & 0.04 \\ \mbox{SR} & -0.18 & 0.49 & 0.14 & 0.35 & 1.03 & -0.09 & 0.15 & 0.04 & 0.04 \\ \mbox{K}_2 = 20 & \mbox{AR} & 0.06 & 0.05 & 0.14 & 0.04 & 0.07 & -2 & -46 & 45 & 32 \\ \mbox{SR} & 0.55 & 0.49 & 0.14 & 0.03 & -0.01 & -0.01 & -0.01 & 0.01 \\ \mbox{K}_2 = 20 & \mbox{AR} & 0.06 & 0.05 & 0.14 & 0.04 & 0.07 & -0.02 & 0.09 & 0.12 & -0.06 \\ \mbox{SR} & 0.55 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.88 & 1.18 & -0.58 \\ \mbox{MD} & -0.02 & -0.02 & -0.05 & -0.01 & -0.02 & -0.01 & -0.01 & -0.01 & 0.01 \\ \mbox{SR} & 0.55 & 0.49 & 1.30 & 0.35 & 0.65 & -0.09 & 0.88 & 1.18 & -0.58 \\ \mbox{MD} & -0.02 & -0.02 & -0.05 & -0.01 & -0.02 & -0.01 & -0.06 & -0.01 \\ \mbox{SR} & 0.46 & -9 & -131 & -3 & -16 & -2 & -38 & -44 & 62 \\ \mbox{TR} & 0.04 & -0.05 & -0.01 & 0.00 & 0.03 & 0.05 & -0.06 & -0.01 \\ \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.97 & -0.09 & 0.36 & 0.70 & -0.83 & -1.32 \\ \mbox{MD} & -0.02 & 0.05 & -0.01 & 0.00 & 0.03 & 0.00 & 0.01 & 0.00 \\ \mbox{SR} & 0.49 & -0.76 & 0.35 & -0.97 & -0.09 & 0.36 & 0.70 & -0.83 & -1.32 \\ \mbox{MD} & -0.21 & 0.16 & 0.00 & -0.02 & 0.15 & 0.11 & 0.02 & 0.01 & 0.00 \\ \mbox{SR} & 0.49 & 0.01 & 0.00 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 \\ \mbox{SR} & 0.01 & 0.04 & 0.00 & -0.02 & 0.15 & 0.11 & 0.02 & 0.01 & 0.00 \\ \mbox{SR} & 0.01 & 0.04 & 0.00 & -0.02 & 0.01 & 0.00 & 0.00 & 0.00 \\ \mbox{SR} $                                                                                                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | k = 20                   |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & 0.01 & 0.00 \\ & \mbox{MD} & -0.01 & 0.02 & 0.05 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ & \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \hline & \mbox{MD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \hline & \mbox{MD} & -423 & 0.01 & 0.01 & 0.02 & 0.08 & 0.00 & 0.011 & 0.04 & 0.05 \\ & \mbox{Agency} & \mbox{Agency} & \mbox{MD} & -0.01 & 0.01 & 0.02 & 0.08 & 0.00 & 0.11 & 0.04 & 0.05 \\ \hline & \mbox{Agency} & A$                                                                                                                                                                               | $k_1 = 20$<br>$k_1 = 50$ |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{SR} & 0.34 & 0.10 & -0.14 & -0.09 & 0.17 & -0.19 & 0.01 \\ \mbox{MDD} & -0.01 & 0.02 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ \mbox{MDD} & -4.23 & 1 & -7 & -24 & -1.62 & -1.00 & -1.86 & 129 & -53 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k_2 = 50$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{MDD} & -0.01 & 0.02 & 0.05 & 0.05 & 0.00 & -0.02 & -0.13 & -0.04 & -0.02 \\ & \mbox{MDD} & 423 & 1 & -7 & -24 & -162 & -100 & -1.86 & 129 & -53 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c} & \mbox{MDD} & -423 & 1 & -7 & -24 & -162 & -100 & -186 & 129 & -53 \\ \hline & & & & n_1 = 539 & & & & \\ \hline & & & & & n_1 = 539 & & & \\ \hline & & & & & & n_1 = 539 & & & \\ \hline & & & & & & & & n_1 = 0.00 & 0.01 & 0.04 & 0.01 & 0.04 & 0.05 \\ \hline & & & & & & & & & 0.02 & 0.05 & 0.01 & 0.04 & 0.01 & -0.02 & 0.04 & 0.04 \\ \hline & & & & & & & & 0.00 & -0.01 & 0.01 & 0.00 & -0.01 & -0.01 & -0.01 & 0.00 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |                 |                 |                  |                  |                |         |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     | 120             |                 | ,                | 21               |                |         | 100   | .27   |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k_1 = 5$                | TR  | -0.02           | 0.04            | 0.01             | 0.02             |                |         | 0.11  | 0.04  | 0.05  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_2 = 20$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10$                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k_1 = 10$               |     | 0.05            | 0.04            |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_2 = 20$               | AR  | 0.06            | 0.05            | 0.14             | 0.04             | 0.07           | -0.02   | 0.09  | 0.12  | -0.06 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                        | SD  | 0.00            | -0.01           | 0.00             | 0.01             | 0.00           | -0.01   | -0.01 | -0.01 | 0.01  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | SR  | 0.55            | 0.49            | 1.30             | 0.35             | 0.65           | -0.09   | 0.88  | 1.18  | -0.58 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ k_1 = 5 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 $                 | $k_1 = 20$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 = 5 \\ k_1 = 5 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_1 $ | $k_2 = 50$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ k_1 = 5 \\ k_2 = 20 \\ k_1 = 5 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\$                |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |     |                 |                 |                  |                  |                |         |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | MDD | -9              | 57              | -3               |                  |                |         | -15   | 40    | 212   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. 5                     | TD  | 0.10            | 0.16            | 0.00             |                  |                |         | 0.28  | 0.11  | 0.02  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_1 = 3$                |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_2 = 20$               |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |                 |                 |                  |                  |                |         |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |     |                 |                 |                  |                  |                |         |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |     |                 |                 |                  |                  |                |         |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $k_1 = 10$               |     |                 |                 |                  |                  |                |         |       |       |       |
| SD         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $k_{2}^{1} = 20$         |     |                 |                 |                  |                  |                |         |       |       | -0.06 |
| MD         -0.03         0.01         -0.08         0.04         0.01         -0.02         0.01         0.00         0.06           MDD         -133         -149         -234         -25         -89         -112         97         -40         192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                        |     |                 |                 |                  |                  |                |         |       |       |       |
| MDD -133 -149 -234 -25 -89 -112 97 -40 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | SR  | 0.61            | 0.38            | 1.13             | 0.04             | 0.36           | 0.21    | 0.22  | 0.61  | -0.50 |
| MDD -133 -149 -234 -25 -89 -112 97 -40 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | MD  |                 |                 |                  |                  |                |         |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | MDD |                 |                 |                  |                  |                |         |       |       |       |
| $k_1 = 20$ TR 0.16 -0.02 -0.02 -0.03 0.11 -0.14 0.12 -0.10 -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $k_1 = 20$               | TR  | 0.16            | -0.02           | -0.02            | -0.03            | 0.11           | -0.14   | 0.12  | -0.10 | -0.09 |
| $k_2 = 50$ AR 0.04 -0.04 0.01 -0.05 0.02 -0.05 0.05 -0.05 -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $k_2 = 50$               | AR  |                 | -0.04           | 0.01             | -0.05            | 0.02           | -0.05   | 0.05  | -0.05 | -0.06 |
| SD 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                        | SD  | 0.00            | 0.00            | 0.00             | 0.00             | 0.00           | 0.00    | -0.01 | -0.01 | 0.01  |
| SR 0.38 -0.34 0.04 -0.40 0.20 -0.43 0.44 -0.49 -0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | SR  | 0.38            |                 | 0.04             | -0.40            | 0.20           |         | 0.44  |       |       |
| MD 0.01 0.03 0.04 0.05 -0.02 0.04 -0.09 -0.01 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |     | 0.01            | 0.03            |                  |                  |                |         |       |       |       |
| MDD -149 53 -25 55 -93 57 -137 53 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | MDD | -149            | 53              | -25              | 55               | -93            | 57      | -137  | 53    | 85    |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2) *MA<sub>i</sub>* denotes the price cross-over strategy based on *k<sub>i</sub>* with *WMA<sub>i</sub>* and *EMA<sub>j</sub>* denoting weighted and exponential moving averages respectively; (3) *MACO*, *WMACO* and *EMACO* denote the moving averages cross-over strategies; (4) *TR* is the difference in total return, *AR* is the difference in annualized return, *SD* is the difference in annualized std. deviation, *SR* is the difference in annualized Sharpe ratios, *MD* is the maximum drawdown and *MDD* is the maximum drawdown duration (in days).

|           |       | $(k_1, k_2)$ | MA1 | MA <sub>2</sub> | WMA <sub>1</sub> | al trades of t<br>WMA <sub>2</sub> | EMA <sub>1</sub> | EMA <sub>2</sub> | MACO | WMACO | EMACO |
|-----------|-------|--------------|-----|-----------------|------------------|------------------------------------|------------------|------------------|------|-------|-------|
| DJIA      | 20618 | 20,50        | 49  | 107             | -51              | 55                                 | -39              | 44               | 308  | 273   | 216   |
| DJIA      | 20018 | 20,50        | 49  | 112             | -51              | 72                                 | -39              | 79               | 216  | 243   | 203   |
|           |       | 50,200       | 107 | 104             | 55               | 97                                 | 44               | 85               | 137  | 197   | 114   |
|           | 2937  | 20,50        | 11  | 22              | -8               | 2                                  | -18              | 13               | 57   | 55    | 41    |
|           | 2751  | 20,100       | 11  | 31              | -8               | 37                                 | -18              | 22               | 62   | 46    | 54    |
|           |       | 50,200       | 22  | 22              | 2                | 11                                 | 14               | 25               | 28   | 52    | 20    |
| SP500     | 20618 | 20,50        | 44  | 101             | -33              | 67                                 | -38              | 27               | 212  | 208   | 174   |
|           |       | 20,100       | 44  | 104             | -33              | 86                                 | -38              | 30               | 179  | 187   | 140   |
|           |       | 50,200       | 101 | 48              | 67               | 76                                 | 27               | 26               | 113  | 106   | 77    |
|           | 2937  | 20,50        | 28  | 29              | -7               | 19                                 | -1               | 9                | 48   | 50    | 37    |
|           |       | 20,100       | 28  | 38              | -7               | 20                                 | -1               | 15               | 44   | 52    | 35    |
|           |       | 50,200       | 101 | 48              | 67               | 76                                 | 27               | 26               | 113  | 106   | 77    |
| SPY       | 2297  | 20,50        | 19  | 13              | -6               | 10                                 | 1                | 2                | 30   | 38    | 24    |
|           |       | 20,100       | 19  | 23              | -6               | 5                                  | 1                | 4                | 28   | 34    | 21    |
|           |       | 50,200       | 13  | 5               | 10               | 0                                  | 7                | 2                | 14   | 10    | 13    |
|           | 787   | 20,50        | 3   | 6               | -1               | 3                                  | -5               | -2               | 5    | 11    | 7     |
|           |       | 20,100       | 3   | 6               | -1               | 1                                  | -5               | -4               | 5    | 8     | 5     |
|           |       | 50,200       | 6   | 5               | 3                | 1                                  | -2               | 2                | 6    | 4     | 3     |
| QQQQ      | 2297  | 20,50        | 11  | 2               | -19              | 11                                 | -8               | -10              | 41   | 34    | 28    |
|           |       | 20,100       | 11  | 19              | -19              | 2                                  | -8               | 5                | 41   | 37    | 21    |
|           |       | 50,200       | 2   | 14              | 11               | 25                                 | -9               | 21               | 29   | 16    | 16    |
|           | 787   | 20,50        | 6   | 1               | -2               | 6                                  | 0                | -3               | 19   | 20    | 8     |
|           |       | 20,100       | 6   | 6               | -2               | -1                                 | 0                | 5                | 19   | 18    | 8     |
|           |       | 50,200       | 1   | 10              | 6                | 4                                  | -3               | 4                | 10   | 8     | 2     |
| XLF       | 2297  | 20,50        | 11  | 11              | 8                | 13                                 | 5                | 3                | 47   | 51    | 35    |
|           |       | 20,100       | 11  | 8               | 8                | 2                                  | 5                | 9                | 31   | 32    | 30    |
|           |       | 50,200       | 11  | 10              | 13               | 10                                 | 4                | 10               | 11   | 28    | 29    |
|           | 787   | 20,50        | 10  | 4               | 4                | 3                                  | 1                | -1               | 13   | 15    | 11    |
|           |       | 20,100       | 10  | 2               | 4                | -1                                 | 1                | 6                | 5    | 7     | 13    |
|           |       | 50,200       | 4   | 0               | 3                | 0                                  | 1                | 12               | 1    | 4     | 3     |
| XLE       | 2297  | 20,50        | 0   | 36              | 1                | 22                                 | -9               | 20               | 54   | 44    | 44    |
|           |       | 20,100       | 0   | 7               | 1                | 20                                 | -9               | 7                | 44   | 39    | 28    |
|           |       | 50,200       | 36  | 9               | 22               | 18                                 | 21               | 8                | 7    | 18    | 10    |
|           | 787   | 20,50        | 4   | 21              | 6                | 8                                  | 1                | 7                | 21   | 18    | 15    |
|           |       | 20,100       | 4   | 8               | 6                | 21                                 | 1                | 4                | 18   | 16    | 10    |
|           |       | 50,200       | 21  | 2               | 8                | 8                                  | 10               | 0                | 14   | 15    | 8     |
| EWJ       | 2297  | 20,50        | 18  | 15              | 6                | 21                                 | 1                | 14               | 35   | 55    | 31    |
|           |       | 20,100       | 18  | 14              | 6                | 21                                 | 1                | 15               | 27   | 30    | 48    |
|           |       | 50,200       | 15  | 8               | 21               | 23                                 | 14               | 16               | 29   | 26    | 16    |
|           | 787   | 20,50        | 17  | 7               | 3                | 15                                 | 10               | 10               | 12   | 21    | 14    |
|           |       | 20,100       | 17  | 4               | 3                | 11                                 | 10               | 9                | 15   | 14    | 16    |
|           |       | 50,200       | 7   | 3               | 15               | 12                                 | 12               | 9                | 8    | 5     | 15    |
| IYR       | 2297  | 20,50        | 17  | 1               | -8               | 5                                  | -10              | -3               | 26   | 41    | 19    |
|           |       | 20,100       | 17  | -2              | -8               | 1                                  | -10              | 6                | 33   | 33    | 13    |
|           | 202   | 50,200       | 1   | 4               | 5                | 11                                 | -3               | 8                | 19   | 22    | 13    |
|           | 787   | 20,50        | 13  | 3               | 5                | 5                                  | 1                | -1               | 16   | 27    | 14    |
|           |       | 20,100       | 13  | 0               | 5                | 4                                  | 1                | 2                | 16   | 19    | 15    |
| ID # 10 D |       | 50,200       | 3   | 2               | 5                | 7                                  | -3               | -1               | 10   | 6     | 1     |
| JR/USD    | 2558  | 5,20         | -61 | -2              | -93              | -10                                | -86              | -20              | 27   | 29    | 28    |
|           |       | 10,20        | -20 | -2              | -36              | -10                                | -25              | -20              | 35   | 41    | 36    |
|           | 520   | 20,50        | -2  | 22              | -10              | -4                                 | -20              | 7                | 26   | 33    | 27    |
|           | 539   | 5,20         | -3  | -2              | -12              | -1                                 | -16              | -5               | 7    | 5     | 1     |
|           |       | 10,20        | 1   | -2              | -6               | -1                                 | -2               | -6               | 3    | 10    | 4     |
|           |       | 20,50        | -2  | 2               | -1               | -1                                 | -6               | 3                | 8    | 9     | 13    |

Notes: Table entries have the number of additional trades (round-trips) for the modified strategy vs. the standard strategy. A negative number indicates less trades. n1 denotes the number of evaluation days and corresponds to S1 for the top part of each series panel and to S3 or S4 for the bottom part of each series panel.

#### 10. Addendum

The tables that follow are supplementary material and are not discussed in the main text. They contain results for the FTSE, NIKKEI and DAX indices and for the USD/JPY and EUR/CHF exchange rates (Tables 1-A through 5-A) and the table with the number of trades for these series (Table 6-A). For the exchange rate series the sample dates and sample splits are the same as for the EUR/USD series of the main text. For the FTSE and NIKKEI indices the starting date is 06/20/1986 and the ending date is 09/02/2011. The sample splits are on 04/21/1987 (6158 evaluation days), 01/04/1993 (4715 days), 01/04/1999 (3199 days) and 01/02/2007 (1180 days). For the DAX index the starting date is 11/26/1990 and the ending date is 09/02/2011. The sample splits are on 10/15/1991 (5035 evaluation days), 01/04/1993 (4733 days), 01/04/1999 (3228 days) and 01/02/2007 (1194 days).

|               |     |                 | Table           | 1-A. Strateg | y evaluation s   | statistics for   | FTSE Index       |       |       |       |
|---------------|-----|-----------------|-----------------|--------------|------------------|------------------|------------------|-------|-------|-------|
|               |     | MA <sub>1</sub> | MA <sub>2</sub> | WMA1         | WMA <sub>2</sub> | EMA <sub>1</sub> | EMA <sub>2</sub> | MACO  | WMACO | EMACO |
|               |     | •               | Ĩ               |              | -                | n1=615           | 58               |       |       |       |
| $k_1 = 20$    | TR  | -0.60           | -0.08           | 0.19         | 0.44             | 0.18             | 0.36             | 1.96  | 0.02  | 1.21  |
| $k_2 = 50$    | AR  | -0.02           | 0.00            | 0.00         | 0.01             | 0.01             | 0.01             | 0.07  | 0.00  | 0.04  |
| -             | SD  | 0.00            | 0.00            | 0.00         | 0.00             | 0.00             | 0.00             | -0.02 | -0.01 | 0.00  |
|               | SR  | -0.15           | -0.03           | 0.03         | 0.09             | 0.10             | 0.09             | 0.50  | 0.01  | 0.33  |
|               | MD  | -0.10           | 0.05            | -0.27        | -0.11            | -0.37            | 0.01             | -0.34 | 0.01  | -0.27 |
|               | MDD | -876            | -54             | -925         | -167             | -297             | -2               | -1435 | -131  | -1041 |
| $k_1 = 20$    | TR  | -0.60           | -0.66           | 0.19         | 0.37             | 0.18             | -0.34            | 2.93  | 1.30  | 0.51  |
| $k_2 = 100$   | AR  | -0.02           | -0.02           | 0.00         | 0.01             | 0.01             | -0.01            | 0.08  | 0.03  | 0.02  |
| 2             | SD  | 0.00            | 0.00            | 0.00         | 0.00             | 0.00             | 0.01             | -0.01 | -0.01 | 0.00  |
|               | SR  | -0.15           | -0.14           | 0.03         | 0.09             | 0.10             | -0.10            | 0.64  | 0.27  | 0.11  |
|               | MD  | -0.10           | 0.02            | -0.27        | -0.08            | -0.37            | -0.08            | -0.33 | -0.04 | 0.07  |
|               | MDD | -876            | -290            | -925         | -12              | -297             | 316              | -1243 | -979  | 83    |
| $k_1 = 50$    | TR  | -0.08           | 0.58            | 0.44         | -0.25            | 0.39             | 0.40             | 0.77  | 3.21  | 1.53  |
| $k_2^1 = 200$ | AR  | 0.00            | 0.02            | 0.01         | -0.01            | 0.02             | 0.01             | 0.02  | 0.07  | 0.04  |
| 2             | SD  | 0.00            | 0.00            | 0.00         | 0.01             | 0.00             | 0.00             | 0.00  | 0.00  | 0.00  |
|               | SR  | -0.03           | 0.11            | 0.09         | -0.08            | 0.11             | 0.07             | 0.13  | 0.45  | 0.24  |
|               | MD  | 0.05            | -0.10           | -0.11        | -0.06            | 0.01             | 0.02             | -0.30 | -0.46 | -0.15 |
|               | MDD | -54             | -204            | -167         | -269             | -2               | -22              | -372  | -1449 | -784  |
|               |     |                 |                 |              |                  | n1=118           |                  |       |       |       |
| $k_1 = 20$    | TR  | -0.02           | -0.13           | -0.08        | 0.03             | 0.08             | 0.06             | 0.25  | 0.02  | 0.44  |
| $k_2 = 50$    | AR  | -0.01           | -0.06           | -0.03        | 0.01             | 0.07             | 0.02             | 0.10  | 0.00  | 0.18  |
| 2             | SD  | -0.01           | 0.00            | 0.00         | 0.01             | 0.00             | 0.00             | -0.03 | 0.00  | -0.01 |
|               | SR  | -0.07           | -0.38           | -0.17        | 0.08             | 0.43             | 0.16             | 0.55  | 0.03  | 1.12  |
|               | MD  | 0.08            | 0.09            | 0.04         | -0.11            | -0.21            | -0.14            | -0.22 | 0.16  | -0.17 |
|               | MDD | -19             | 308             | -171         | -44              | -373             | -49              | -375  | 286   | -373  |
| $k_1 = 20$    | TR  | -0.02           | -0.08           | -0.08        | 0.11             | 0.08             | -0.17            | 0.20  | 0.21  | 0.15  |
| $k_2 = 100$   | AR  | -0.01           | -0.03           | -0.03        | 0.04             | 0.07             | -0.08            | 0.09  | 0.08  | 0.07  |
| 2             | SD  | -0.01           | 0.01            | 0.00         | 0.00             | 0.00             | 0.01             | -0.01 | -0.01 | 0.00  |
|               | SR  | -0.07           | -0.19           | -0.17        | 0.29             | 0.43             | -0.50            | 0.55  | 0.52  | 0.43  |
|               | MD  | 0.08            | 0.00            | 0.04         | -0.11            | -0.21            | 0.12             | -0.16 | -0.20 | -0.16 |
|               | MDD | -19             | -59             | -171         | -267             | -373             | -62              | -334  | -267  | -163  |
| $k_1 = 50$    | TR  | -0.13           | -0.12           | 0.03         | -0.11            | 0.05             | 0.21             | -0.16 | 0.03  | 0.12  |
| $k_2 = 200$   | AR  | -0.06           | -0.05           | 0.01         | -0.04            | 0.02             | 0.11             | -0.05 | 0.01  | 0.07  |
|               | SD  | 0.00            | 0.00            | 0.01         | 0.01             | 0.00             | 0.01             | -0.01 | 0.00  | 0.00  |
|               | SR  | -0.38           | -0.30           | 0.08         | -0.27            | 0.15             | 0.70             | -0.32 | 0.07  | 0.41  |
|               | MD  | 0.09            | 0.06            | -0.11        | 0.06             | -0.14            | -0.13            | 0.03  | -0.21 | -0.07 |
|               | MDD | 308             | 279             | -44          | 94               | -49              | -101             | 73    | -219  | -139  |
|               |     |                 |                 |              |                  | ge across n1     | given k1, k2     |       |       |       |
| $k_1 = 20$    | TR  | -0.11           | -0.07           | 0.10         | 0.20             | 0.19             | 0.21             | 0.95  | 0.05  | 0.80  |
| $k_2 = 50$    | AR  | 0.00            | -0.02           | 0.00         | 0.01             | 0.04             | 0.02             | 0.07  | 0.00  | 0.09  |
|               | SD  | 0.00            | 0.00            | 0.00         | 0.00             | 0.00             | 0.00             | -0.02 | 0.00  | 0.00  |
|               | SR  | -0.03           | -0.14           | 0.01         | 0.10             | 0.26             | 0.13             | 0.49  | 0.03  | 0.60  |
|               | MD  | -0.04           | 0.06            | -0.18        | -0.10            | -0.30            | 0.00             | -0.30 | 0.08  | -0.25 |
|               | MDD | -594            | 52              | -712         | -107             | -274             | -14              | -1079 | 8     | -837  |
| $k_1 = 20$    | TR  | -0.11           | -0.27           | 0.10         | 0.16             | 0.19             | -0.20            | 1.19  | 0.64  | 0.18  |
| $k_2 = 100$   | AR  | 0.00            | -0.02           | 0.00         | 0.02             | 0.04             | -0.03            | 0.07  | 0.05  | 0.02  |
|               | SD  | 0.00            | 0.01            | 0.00         | 0.00             | 0.00             | 0.01             | -0.01 | -0.01 | 0.00  |
|               | SR  | -0.03           | -0.13           | 0.01         | 0.13             | 0.26             | -0.20            | 0.52  | 0.33  | 0.15  |
|               | MD  | -0.04           | 0.02            | -0.18        | -0.08            | -0.30            | -0.03            | -0.22 | -0.08 | 0.00  |
|               | MDD | -594            | -232            | -712         | -61              | -274             | 230              | -812  | -764  | 68    |
| $k_1 = 50$    | TR  | -0.07           | 0.03            | 0.20         | -0.15            | 0.22             | 0.23             | -0.06 | 1.17  | 0.55  |
| $k_2 = 200$   | AR  | -0.02           | -0.02           | 0.01         | -0.02            | 0.02             | 0.04             | -0.02 | 0.04  | 0.04  |
|               | SD  | 0.00            | 0.00            | 0.00         | 0.01             | 0.00             | 0.00             | 0.00  | 0.00  | 0.00  |
|               | SR  | -0.14           | -0.11           | 0.10         | -0.12            | 0.13             | 0.24             | -0.14 | 0.24  | 0.24  |
|               | MD  | 0.06            | -0.01           | -0.10        | -0.05            | -0.02            | 0.01             | 0.04  | -0.25 | -0.05 |
|               | MDD | 52              | 32              | -107         | -220             | -14              | -11              | 73    | -625  | -242  |

Table 1-A. Strategy evaluation statistics for FTSE Index

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$  and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|             |     |                 | Table 2-        | A. Strategy      | evaluation st    | atistics for N      | IKKEI Inde       | ex    |       |       |
|-------------|-----|-----------------|-----------------|------------------|------------------|---------------------|------------------|-------|-------|-------|
|             |     | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> | EMA <sub>1</sub>    | EMA <sub>2</sub> | MACO  | WMACO | EMACO |
|             |     |                 |                 |                  |                  | n <sub>1</sub> =615 |                  |       |       |       |
| $k_1 = 20$  | TR  | -0.47           | 1.29            | -0.50            | 0.05             | 0.12                | 0.05             | 1.27  | 0.51  | 0.79  |
| $k_2 = 50$  | AR  | -0.05           | 0.04            | -0.05            | 0.00             | 0.00                | 0.00             | 0.07  | 0.04  | 0.03  |
|             | SD  | 0.00            | 0.00            | -0.01            | -0.01            | 0.00                | 0.00             | -0.01 | -0.01 | 0.00  |
|             | SR  | -0.24           | 0.21            | -0.25            | 0.02             | 0.02                | 0.01             | 0.38  | 0.20  | 0.18  |
|             | MD  | 1.56            | -0.26           | 1.26             | -0.18            | 0.90                | -0.28            | -0.26 | -0.12 | -0.05 |
|             | MDD | 1067            | -446            | 6                | -433             | 868                 | -704             | -1241 | -705  | 569   |
| $k_1 = 20$  | TR  | -0.47           | -0.41           | -0.50            | -0.41            | 0.12                | -0.95            | 0.09  | 0.44  | -0.84 |
| $k_2 = 100$ | AR  | -0.05           | -0.02           | -0.05            | -0.01            | 0.00                | -0.04            | 0.00  | 0.02  | -0.05 |
|             | SD  | 0.00            | 0.00            | -0.01            | 0.00             | 0.00                | 0.01             | 0.00  | 0.00  | 0.01  |
|             | SR  | -0.24           | -0.10           | -0.25            | -0.08            | 0.02                | -0.21            | 0.02  | 0.13  | -0.26 |
|             | MD  | 1.56            | 0.33            | 1.26             | -0.11            | 0.90                | 0.20             | -0.05 | -0.15 | 0.78  |
|             | MDD | 1067            | -3              | 6                | 22               | 868                 | 567              | -144  | -556  | 1557  |
| $k_1 = 50$  | TR  | 1.29            | -1.22           | 0.05             | -0.81            | 0.15                | 0.01             | -0.41 | -0.34 | -0.53 |
| $k_2 = 200$ | AR  | 0.04            | -0.07           | 0.00             | -0.03            | 0.01                | 0.00             | -0.03 | -0.03 | -0.06 |
|             | SD  | 0.00            | 0.01            | -0.01            | 0.00             | 0.00                | 0.01             | 0.00  | 0.00  | 0.01  |
|             | SR  | 0.21            | -0.39           | 0.02             | -0.17            | 0.03                | 0.00             | -0.15 | -0.13 | -0.32 |
|             | MD  | -0.26           | 1.44            | -0.18            | 0.21             | -0.28               | 0.17             | 0.24  | 1.08  | 1.20  |
|             | MDD | -446            | 1348            | -433             | 897              | -704                | -294             | 125   | 1030  | 899   |
|             |     |                 |                 |                  |                  | n <sub>1</sub> =118 |                  |       |       |       |
| $k_1 = 20$  | TR  | 0.17            | 0.08            | -0.17            | 0.16             | 0.45                | -0.15            | 0.27  | 0.09  | 0.04  |
| $k_2 = 50$  | AR  | 0.06            | 0.03            | -0.08            | 0.07             | 0.19                | -0.08            | 0.16  | 0.05  | 0.01  |
|             | SD  | -0.01           | 0.00            | -0.01            | 0.00             | -0.01               | 0.02             | -0.02 | 0.00  | -0.01 |
|             | SR  | 0.25            | 0.18            | -0.35            | 0.35             | 0.85                | -0.37            | 0.67  | 0.23  | 0.01  |
|             | MD  | -0.22           | -0.06           | 0.15             | -0.11            | -0.50               | 0.13             | -0.46 | -0.19 | -0.12 |
|             | MDD | -296            | 43              | 238              | 2                | -279                | 56               | -271  | 74    | -1    |
| $k_1 = 20$  | TR  | 0.17            | -0.14           | -0.17            | -0.08            | 0.45                | -0.14            | -0.14 | 0.00  | -0.02 |
| $k_2 = 100$ | AR  | 0.06            | -0.10           | -0.08            | -0.04            | 0.19                | -0.12            | -0.08 | -0.01 | -0.03 |
|             | SD  | -0.01           | 0.00            | -0.01            | 0.02             | -0.01               | 0.01             | -0.01 | 0.00  | -0.01 |
|             | SR  | 0.25            | -0.50           | -0.35            | -0.19            | 0.85                | -0.53            | -0.41 | -0.06 | -0.15 |
|             | MD  | -0.22           | 0.33            | 0.15             | 0.07             | -0.50               | 0.26             | 0.13  | 0.03  | 0.02  |
|             | MDD | -296            | 216             | 238              | 238              | -279                | -15              | 149   | -6    | 37    |
| $k_1 = 50$  | TR  | 0.08            | -0.13           | 0.16             | -0.06            | -0.10               | 0.01             | -0.33 | -0.11 | -0.32 |
| $k_2 = 200$ | AR  | 0.03            | -0.08           | 0.07             | -0.03            | -0.06               | 0.02             | -0.22 | -0.08 | -0.05 |
|             | SD  | 0.00            | 0.00            | 0.00             | 0.00             | 0.02                | 0.00             | -0.03 | -0.01 | 0.10  |
|             | SR  | 0.18            | -0.42           | 0.35             | -0.16            | -0.24               | 0.08             | -1.18 | -0.40 | 0.02  |
|             | MD  | -0.06           | 0.21            | -0.11            | 0.08             | 0.09                | 0.04             | 0.38  | 0.01  | 1.04  |
|             | MDD | 43              | 244             | 2                | 79               | -253                | -48              | 179   | -12   | 546   |
|             |     |                 |                 |                  |                  |                     | given $k_1, k_2$ |       |       |       |
| $k_1 = 20$  | TR  | -0.16           | 0.70            | -0.29            | 0.15             | 0.28                | 0.03             | 0.69  | 0.26  | 0.43  |
| $k_2 = 50$  | AR  | -0.02           | 0.05            | -0.05            | 0.03             | 0.07                | -0.01            | 0.10  | 0.04  | 0.04  |
|             | SD  | -0.01           | 0.00            | -0.01            | 0.00             | 0.00                | 0.01             | -0.01 | 0.00  | 0.00  |
|             | SR  | -0.09           | 0.24            | -0.25            | 0.15             | 0.32                | -0.06            | 0.45  | 0.18  | 0.17  |
|             | MD  | 0.76            | -0.20           | 0.61             | -0.15            | 0.18                | -0.17            | -0.31 | -0.09 | -0.10 |
|             | MDD | 318             | -436            | 169              | -393             | 203                 | -467             | -579  | -196  | -10   |
| $k_1 = 20$  | TR  | -0.16           | -0.20           | -0.29            | -0.15            | 0.28                | -0.51            | 0.04  | 0.22  | -0.44 |
| $k_2 = 100$ | AR  | -0.02           | -0.04           | -0.05            | -0.01            | 0.07                | -0.06            | -0.01 | 0.02  | -0.05 |
|             | SD  | -0.01           | 0.01            | -0.01            | 0.01             | 0.00                | 0.01             | 0.00  | 0.00  | 0.00  |
|             | SR  | -0.09           | -0.19           | -0.25            | -0.07            | 0.32                | -0.32            | -0.07 | 0.08  | -0.24 |
|             | MD  | 0.76            | 0.33            | 0.61             | -0.09            | 0.18                | 0.24             | -0.02 | -0.07 | 0.37  |
|             | MDD | 318             | -11             | 169              | -71              | 203                 | 167              | 78    | -291  | 523   |
| $k_1 = 50$  | TR  | 0.70            | -0.62           | 0.15             | -0.36            | 0.10                | -0.05            | -0.29 | -0.20 | -0.37 |
| $k_2 = 200$ | AR  | 0.05            | -0.07           | 0.03             | -0.03            | 0.00                | 0.00             | -0.08 | -0.04 | -0.05 |
|             | SD  | 0.00            | 0.01            | 0.00             | 0.01             | 0.01                | 0.00             | -0.01 | 0.00  | 0.03  |
|             | SR  | 0.26            | -0.35           | 0.09             | -0.16            | 0.07                | -0.05            | -0.14 | -0.12 | -0.26 |
|             | MD  | -0.20           | 0.52            | -0.15            | 0.14             | -0.18               | 0.09             | 0.20  | 0.31  | 0.72  |
|             | MDD | -436            | 660             | -393             | 374              | -545                | -22              | 68    | 550   | 578   |
|             |     |                 |                 |                  |                  |                     |                  |       |       |       |

Table 2-A. Strategy evaluation statistics for NIKKEI Index

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|                             |          |                 | Table           | 3-A. Strateg  | y evaluation     | statistics for   | DAX Index        |               |               |               |
|-----------------------------|----------|-----------------|-----------------|---------------|------------------|------------------|------------------|---------------|---------------|---------------|
|                             |          | MA <sub>1</sub> | MA <sub>2</sub> | WMA1          | WMA <sub>2</sub> | EMA <sub>1</sub> | EMA <sub>2</sub> | MACO          | WMACO         | EMACO         |
|                             |          |                 |                 |               |                  | n1=503           | 35               |               |               |               |
| $k_1 = 20$                  | TR       | 1.51            | -0.33           | 0.48          | -1.35            | 0.75             | -0.80            | 4.16          | 3.68          | 1.36          |
| $k_2 = 50$                  | AR       | 0.03            | -0.01           | 0.04          | -0.03            | 0.01             | -0.01            | 0.05          | 0.05          | 0.03          |
|                             | SD       | 0.00            | 0.01            | 0.00          | 0.00             | 0.00             | 0.01             | 0.00          | 0.01          | 0.00          |
|                             | SR       | 0.16            | -0.09           | 0.20          | -0.17            | 0.07             | -0.13            | 0.25          | 0.22          | 0.12          |
|                             | MD       | -0.25           | 0.21            | -0.35         | 0.45             | -0.06            | 0.05             | -0.04         | 0.07          | 0.40          |
|                             | MDD      | -723            | 531             | -473          | 139              | -368             | -26              | -412          | -276          | 554           |
| $k_1 = 20$                  | TR       | 1.51            | -0.76           | 0.48          | -0.57            | 0.75             | 1.46             | 6.30          | 1.95          | 2.96          |
| $k_2 = 100$                 | AR       | 0.03            | -0.02           | 0.04          | -0.02            | 0.01             | 0.03             | 0.07          | 0.03          | 0.05          |
|                             | SD       | 0.00            | 0.00            | 0.00          | 0.01             | 0.00             | 0.00             | 0.00          | 0.00          | 0.01          |
|                             | SR       | 0.16            | -0.10           | 0.20          | -0.12            | 0.07             | 0.17             | 0.38          | 0.18          | 0.25          |
|                             | MD       | -0.25           | 0.05            | -0.35         | 0.06             | -0.06            | -0.30            | 0.13          | 0.17          | -0.22         |
|                             | MDD      | -723            | 396             | -473          | 431              | -368             | -413             | -287          | 296           | -815          |
| $k_1 = 50$                  | TR       | -0.33           | -2.47           | -1.35         | 1.77             | -0.83            | 0.33             | -1.20         | -2.85         | -3.02         |
| $k_2 = 200$                 | AR       | -0.01           | -0.05           | -0.03         | 0.03             | -0.02            | 0.00             | -0.03         | -0.05         | -0.07         |
|                             | SD       | 0.01            | 0.01            | 0.00          | 0.00             | 0.01             | 0.00             | 0.01          | 0.01          | 0.03          |
|                             | SR       | -0.09           | -0.29           | -0.17         | 0.16             | -0.13            | -0.03            | -0.20         | -0.33         | -0.41         |
|                             | MD       | 0.21            | 0.14            | 0.45          | -0.16            | 0.05             | 0.04             | 0.16          | 0.60          | 0.36          |
|                             | MDD      | 531             | 408             | 139           | -530             | -26              | 31               | 268           | 607           | 401           |
| 1. 20                       | TD       | 0.04            | 0.01            | 0.19          | 0.06             | n1=119           |                  | 0.21          | 0.22          | 0.51          |
| $k_1 = 20$                  | TR       | -0.04           | 0.01            | -0.18         | -0.06            | 0.17             | 0.24             | 0.31          | 0.33          | 0.51          |
| $k_2 = 50$                  | AR       | -0.02           | 0.00<br>0.00    | 0.03          | -0.02<br>0.00    | 0.07<br>0.00     | 0.08             | 0.13          | 0.10          | 0.17<br>0.00  |
|                             | SD<br>SR | 0.00            |                 | 0.00          |                  |                  | 0.00             |               | 0.00          |               |
|                             | MD       | -0.09<br>-0.08  | 0.02<br>0.02    | 0.14<br>-0.23 | -0.12<br>-0.03   | 0.33<br>-0.22    | 0.44<br>-0.07    | 0.66<br>-0.37 | 0.56<br>-0.08 | 0.89<br>-0.12 |
|                             | MDD      | -0.08           | 11              | -0.23         | -0.05            | -0.22            | -0.07            | -0.37         | -0.08<br>-434 | -0.12         |
| 1. 20                       | TR       | -0.04           | 0.06            | -225          | 0.05             | 0.17             | -49              | 0.52          | 0.36          | -0.06         |
| $k_1 = 20 \\ k_2 = 100$     | AR       | -0.04           | 0.08            | 0.03          | 0.03             | 0.17             | -0.10            | 0.32          | 0.38          | -0.00         |
| $k_2 = 100$                 | SD       | 0.00            | 0.02            | 0.00          | 0.02             | 0.07             | 0.04             | -0.01         | 0.15          | 0.02          |
|                             | SR       | -0.09           | 0.00            | 0.14          | 0.01             | 0.33             | -0.23            | 0.81          | 0.68          | -0.11         |
|                             | MD       | -0.09           | -0.02           | -0.23         | -0.03            | -0.22            | 0.03             | -0.33         | -0.12         | -0.01         |
|                             | MDD      | -273            | -74             | -223          | 39               | -337             | -3               | -516          | -364          | 41            |
| $k_1 = 50$                  | TR       | 0.01            | -0.23           | -0.06         | -0.11            | 0.24             | 0.03             | -0.24         | -0.41         | -0.02         |
| $k_1 = 50$<br>$k_2 = 200$   | AR       | 0.00            | -0.06           | -0.02         | -0.03            | 0.08             | 0.01             | -0.07         | -0.11         | -0.01         |
| <i>n</i> <sub>2</sub> = 200 | SD       | 0.00            | 0.00            | 0.00          | 0.00             | 0.00             | 0.00             | 0.00          | 0.01          | 0.00          |
|                             | SR       | 0.02            | -0.34           | -0.12         | -0.16            | 0.44             | 0.08             | -0.34         | -0.56         | -0.06         |
|                             | MD       | 0.02            | 0.17            | -0.03         | 0.06             | -0.07            | 0.01             | 0.03          | 0.13          | 0.03          |
|                             | MDD      | 11              | 404             | 4             | 94               | -49              | 5                | 265           | 359           | -238          |
|                             |          |                 |                 |               | Avera            | ge across n1     | given k1, k2     |               |               |               |
| $k_1 = 20$                  | TR       | 0.90            | -0.14           | 0.25          | -0.69            | 0.57             | -0.24            | 2.63          | 2.16          | 1.04          |
| $k_2 = 50$                  | AR       | 0.03            | 0.00            | 0.04          | -0.02            | 0.04             | 0.02             | 0.09          | 0.07          | 0.07          |
| 2                           | SD       | 0.00            | 0.01            | 0.00          | 0.00             | 0.00             | 0.01             | 0.00          | 0.00          | 0.00          |
|                             | SR       | 0.13            | -0.02           | 0.21          | -0.13            | 0.18             | 0.07             | 0.44          | 0.33          | 0.36          |
|                             | MD       | -0.21           | 0.15            | -0.32         | 0.33             | -0.10            | 0.02             | -0.18         | -0.03         | 0.18          |
|                             | MDD      | -611            | 300             | -411          | 105              | -360             | -32              | -421          | -342          | 242           |
| $k_1 = 20$                  | TR       | 0.90            | -0.31           | 0.25          | -0.31            | 0.57             | 0.86             | 3.63          | 1.32          | 1.73          |
| $k_2 = 100$                 | AR       | 0.03            | 0.00            | 0.04          | 0.00             | 0.04             | 0.02             | 0.10          | 0.07          | 0.04          |
|                             | SD       | 0.00            | 0.00            | 0.00          | 0.01             | 0.00             | 0.00             | 0.00          | 0.00          | 0.00          |
|                             | SR       | 0.13            | -0.03           | 0.21          | -0.04            | 0.18             | 0.09             | 0.54          | 0.37          | 0.20          |
|                             | MD       | -0.21           | 0.05            | -0.32         | 0.01             | -0.10            | -0.23            | -0.05         | 0.03          | -0.22         |
|                             | MDD      | -611            | 280             | -411          | 241              | -360             | -303             | -344          | 18            | -538          |
| $k_1 = 50$                  | TR       | -0.14           | -1.39           | -0.69         | 0.99             | -0.26            | 0.07             | -0.82         | -2.04         | -1.75         |
| $k_2 = 200$                 | AR       | 0.00            | -0.05           | -0.02         | 0.01             | 0.02             | 0.00             | -0.05         | -0.08         | -0.06         |
|                             | SD       | 0.01            | 0.01            | 0.00          | 0.00             | 0.01             | 0.00             | 0.01          | 0.01          | 0.02          |
|                             | SR       | -0.02           | -0.31           | -0.13         | 0.08             | 0.06             | -0.01            | -0.27         | -0.46         | -0.37         |
|                             | MD       | 0.15            | 0.21            | 0.33          | -0.10            | 0.02             | 0.03             | 0.13          | 0.49          | 0.39          |
|                             | MDD      | 300             | 477             | 105           | -304             | -32              | 22               | 267           | 572           | 345           |
|                             |          |                 |                 |               |                  |                  |                  |               |               |               |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2) MA<sub>i</sub> denotes the price cross-over strategy based on k<sub>i</sub> with WMA<sub>i</sub> and EMA<sub>i</sub> denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |     |                 | Tabl            | e 4-A. Strate    | gy evaluation    | n statistics fo | or USD/JPY |       |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|-----------------|-----------------|------------------|------------------|-----------------|------------|-------|-------|-------|
| $ \begin{array}{c} k_1 = 5 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 50 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 = 20 \\ k_2 = 20 \\ k_1 $ |            |     | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> |                 |            | MACO  | WMACO | EMACO |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |     |                 | -               |                  | _                |                 |            |       |       |       |
| $ \begin{array}{c} \begin{array}{c} & & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & $                                                                                                                                                                              | $k_1 = 5$  |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $k_2 = 20$ |     |                 |                 |                  | -0.03            |                 |            |       |       |       |
| $ \begin{array}{c} & \mbox{MD} & -0.01 & 0.11 & -0.09 & 0.17 & 0.31 & -0.06 & 0.16 & 0.15 & 0.11 \\ \hline k_1 = 10 & \begin{tabular}{ll} & ta$                                                                                                                                                                                           |            |     |                 |                 |                  |                  |                 |            |       |       | 0.00  |
| $ \begin{array}{c} \begin{array}{c} & \mbox{MDD} & -24 & -19 & 186 & 67 & 104 & 52 & -73 & 438 & 18 \\ k_2 = 20 & \mbox{AR} & -0.01 & -0.02 & -0.04 & -0.03 & -0.04 & 0.00 & 0.03 & -0.03 & 0.03 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & -0.10 & -0.20 & -0.37 & -0.27 & -0.34 & 0.08 & 0.30 & -0.25 & 0.28 \\ & \mbox{MDD} & -45 & -19 & 487 & 67 & 138 & 52 & 27 & -12 & 60 \\ & \mbox{MDD} & -45 & -19 & 487 & 67 & 138 & 52 & 27 & -12 & 60 \\ & \mbox{AR} & -0.02 & 0.02 & -0.03 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & -0.02 \\ & \mbox{SD} & -0.02 & 0.02 & -0.03 & 0.01 & 0.00 & 0.03 & 0.00 & 0.02 & -0.02 \\ & \mbox{SD} & -0.02 & 0.02 & -0.03 & 0.01 & -0.01 & 0.01 & 0.00 & 0.02 & -0.02 \\ & \mbox{SD} & -0.02 & 0.02 & -0.03 & 0.01 & -0.06 & 0.03 & -0.03 & 0.02 & -0.02 \\ & \mbox{SD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ & \mbox{MD} & 0.00 & 0.00 & 0.01 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.22 & 0.19 & 0.25 & -0.34 & -0.33 & 0.04 & 0.31 & -0.03 & 0.07 \\ & \mbox{MD} & -0.02 & 0.02 & -0.06 & -0.04 & -0.06 & 0.02 & 0.01 & 0.02 & -0.01 \\ & \mbox{AL} & \mbox{AL} & \mbox{AL} & \ -10 & -0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \\mbox{SR} & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \\mbox{SR} & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \\mbox{SR} & 0.02 & 0.02 & 0.03 & -0.05 & -0.05 & 0.03 & 0.00 \\ & \\mbox{SR} & 0.22 & 0.03 &$                                                                                                                                                   |            |     |                 | -0.20           |                  | -0.27            | -0.49           |            | -0.31 | -0.33 | -0.18 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |     |                 |                 |                  |                  |                 |            |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $k_1 = 10$ | TR  | -0.05           | -0.06           | -0.15            | -0.09            | -0.13           | 0.02       | 0.10  | -0.08 | 0.08  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_2 = 20$ | AR  |                 | -0.02           |                  | -0.03            | -0.04           |            |       |       | 0.03  |
| $ \begin{array}{c} & \mbox{MD} & -0.66 & -0.11 & -0.16 & -0.17 & -0.14 & -0.06 & -0.12 & -0.14 & -0.13 \\ k_2 = 50 & \mbox{MD} & -45 & -19 & 487 & 67 & 138 & 52 & 27 & -12 & 60 \\ \hline TR & -0.06 & -0.05 & -0.09 & -0.04 & -0.02 & -0.10 & -0.00 & 0.08 & -0.03 \\ \hline TR & -0.02 & -0.02 & -0.03 & -0.01 & -0.01 & -0.01 & 0.00 & 0.02 & -0.02 \\ \hline SD & -0.00 & -0.00 & -0.01 & -0.01 & -0.01 & 0.00 & 0.00 & -0.00 \\ \hline SR & -0.20 & 0.13 & -0.27 & -0.16 & -0.08 & 0.30 & -0.03 & 0.22 & -0.12 \\ \hline MD & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | SD  | 0.00            | 0.00            | 0.00             | 0.00             | 0.00            | -0.01      | 0.00  | 0.00  | 0.00  |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \mbox{MDD} & -45 & -19 & 487 & 67 & 138 & 52 & 27 & -12 & 60 \\ \hline \mbox{TR} & -0.06 & 0.05 & -0.09 & 0.04 & 0.02 & 0.10 & 0.00 & 0.08 & 0.03 \\ \mbox{AR} & -0.02 & 0.02 & -0.03 & 0.01 & 0.00 & 0.00 & 0.00 & -0.01 \\ \mbox{SR} & -0.20 & 0.13 & -0.27 & 0.16 & 0.08 & 0.30 & -0.00 & 0.00 \\ \mbox{SR} & -0.20 & 0.13 & -0.27 & 0.16 & 0.08 & 0.30 & -0.02 & -0.12 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \mbox{SR} & 0.22 & 0.01 & 0.03 & -0.03 & -0.04 & -0.07 & 0.01 & 0.04 & 0.00 & 0.00 \\ \mbox{SR} & 0.22 & 0.19 & 0.25 & -0.07 & 0.01 & 0.04 & 0.00 & 0.00 \\ \mbox{SR} & 0.22 & 0.19 & 0.25 & -0.34 & -0.53 & 0.04 & -0.01 & 0.04 & 0.00 & 0.00 \\ \mbox{SR} & 0.22 & 0.19 & 0.25 & -0.34 & -0.53 & 0.04 & -0.01 & 0.02 & -0.02 \\ \mbox{MDD} & 46 & 4 & 45 & 38 & 48 & 1 & -39 & 7 & 29 \\ \mbox{MDD} & 46 & 4 & 45 & 38 & 48 & 1 & -39 & 7 & 29 \\ \mbox{MDD} & 46 & -0.05 & -0.08 & 0.02 & 0.12 & 0.03 & 0.05 \\ \mbox{SR} & 0.11 & 0.19 & -0.40 & -0.34 & -0.56 & 0.12 & 0.95 & 0.18 & 0.42 \\ \mbox{MDD} & 63 & 4 & 93 & 38 & 2 & 1 & -104 & 17 & 6 \\ \mbox{TR} & 0.02 & 0.02 & -0.06 & -0.04 & -0.06 & 0.02 & -0.12 & -0.04 \\ \mbox{MDD} & 63 & 4 & 93 & 38 & 2 & 1 & -104 & 17 & 6 \\ \mbox{TR} & 0.02 & 0.02 & -0.05 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ \mbox{SR} & 0.19 & 0.50 & -0.34 & -0.55 & 0.02 & -0.10 & 0.01 & 0.00 \\ \mbox{SR} & 0.19 & 0.50 & -0.05 & 0.00 & 0.00 & 0.00 & 0.01 & 0.01 & 0.00 \\ \mbox{SR} & 0.22 & 0.16 & -0.05 & -0.08 & 0.02 & -0.12 & -0.04 & 0.01 \\ \mbox{MDD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ \mbox{MDD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ \mbox{MDD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ \mbox{MDD} & 4 & -13 & 38 & -5 & 41 & 19 & -28 & 111 & 25 \\ \mbox{MDD} & 4 & 0.22 & 0.05 & -0.05 & -0.06 & 0.044 & -0.02 & -0.02 & -0.01 \\ \mbox{MDD} & -63 & 1 & 88 & -5 & 41 & 19 & -28 & 111 & 25 \\ \mbox{MDD} & -63 & 1 & 88 & -5 & 41 & 19 & -2$                                                                                                                                |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} k_1 = 20 \\ k_2 = 50 \\ k_2 = 50 \end{array} \begin{array}{c} \mbox{TR} & -0.06 & -0.05 & -0.09 & -0.04 & -0.02 & -0.10 & -0.00 & -0.08 & -0.03 \\ \mbox{SD} & -0.00 & 0.00 & -0.00 & -0.01 & -0.01 & -0.01 & 0.00 & 0.00 & -0.02 \\ \mbox{SR} & -0.20 & 0.13 & -0.27 & -0.16 & -0.08 & -0.03 & 0.22 & -0.12 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \mbox{R} & -220 & -0.02 & 0.03 & -0.03 & -0.05 & -0.07 & 0.01 & 0.04 & 0.00 & 0.00 \\ \mbox{SR} & 0.02 & 0.02 & 0.03 & -0.04 & -0.07 & 0.01 & 0.04 & 0.00 & 0.00 \\ \mbox{SR} & 0.22 & 0.19 & 0.25 & -0.34 & -0.53 & 0.04 & -0.03 & 0.07 \\ \mbox{K} & -200 & -0.00 & -0.00 & -0.01 & 0.06 & -0.02 & -0.02 & -0.01 \\ \mbox{MD} & -0.09 & -0.05 & -0.10 & 0.05 & -0.08 & 0.02 & -0.12 & -0.01 \\ \mbox{MD} & -0.09 & -0.05 & -0.08 & 0.02 & -0.12 & -0.01 \\ \mbox{MD} & -0.02 & 0.02 & -0.06 & -0.04 & -0.06 & -0.11 & 0.02 & 0.05 \\ \mbox{K} & -200 & -0.02 & -0.06 & -0.04 & -0.06 & 0.02 & -0.12 & -0.01 \\ \mbox{MD} & -0.02 & 0.02 & -0.06 & -0.04 & -0.06 & 0.02 & -0.12 & -0.04 & 0.01 \\ \mbox{K} & -210 & -0.03 & -0.05 & -0.08 & 0.02 & -0.12 & -0.04 & 0.01 \\ \mbox{K} & -210 & -0.04 & -0.05 & -0.08 & 0.02 & -0.12 & -0.04 & 0.01 \\ \mbox{K} & -210 & -0.04 & -0.05 & -0.08 & 0.00 & -0.01 & -0.02 & -0.01 \\ \mbox{K} & -210 & -0.04 & -0.05 & -0.08 & 0.00 & -0.01 & -0.02 & -0.01 \\ \mbox{K} & -220 & -10 & 0.00 & -0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ \mbox{K} & 0.11 & 0.19 & -0.40 & -0.34 & -0.56 & 0.12 & -0.95 & 0.18 & 0.42 \\ \mbox{MD} & -0.3 & -0.05 & -0.09 & 0.05 & -0.01 & -0.02 & -0.10 & 0.04 & -0.02 & -0.01 \\ \mbox{K} & -13 & 38 & -4 & 1 & -24 & 62 & -17 & -53 \\ \mbox{K} & 0.19 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.01 & 0.00 \\ \mbox{SR} & 0.19 & 0.50 & -0.02 & -0.03 & 0.003 & 0.00 & -0.02 & -0.01 \\ \mbox{K} & -220 & -10 & 0.05 & -0.02 & -0.02 & 0.03 & 0.00 & -0.02 & -0.01 \\ \mbox{K} & -100 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & -0.$                                                                                                                                        |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} k_2 = 50 \\ k_2 = 50 \\ k_1 = 5 \\ k_2 = 50 \end{array} \begin{array}{c} \mbox{AR} & -0.02 & 0.02 & -0.03 & 0.01 & 0.00 & 0.03 & 0.00 & 0.00 & -0.01 \\ \mbox{SR} & -0.20 & 0.13 & -0.27 & 0.16 & 0.08 & 0.30 & -0.03 & 0.22 & -0.12 \\ \mbox{MD} & -1.1 & -0.08 & 0.17 & -0.06 & -0.06 & -0.17 & -0.02 & -0.12 & -0.08 \\ \mbox{MDD} & -1.9 & 57 & 67 & -17 & 52 \\ \mbox{SP} & -16 & -135 & -169 & -226 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} k_2 = 50 \\ k_2 = 50 \\ k_1 = 5 \\ k_2 = 50 \end{array} \begin{array}{c} \mbox{AR} & -0.02 & 0.02 & -0.03 & 0.01 & 0.00 & 0.03 & 0.00 & 0.00 & -0.01 \\ \mbox{SR} & -0.20 & 0.13 & -0.27 & 0.16 & 0.08 & 0.30 & -0.03 & 0.22 & -0.12 \\ \mbox{MD} & -1.1 & -0.08 & 0.17 & -0.06 & -0.06 & -0.17 & -0.02 & -0.12 & -0.08 \\ \mbox{MDD} & -1.9 & 57 & 67 & -17 & 52 \\ \mbox{SP} & -16 & -135 & -169 & -226 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $k_1 = 20$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} & {\rm SD} & 0.00 & 0.00 & 0.00 & -0.01 & -0.01 & 0.01 & 0.00 & 0.00 & 0.00 \\ {\rm SR} & 0.22 & 0.11 & -0.08 & 0.17 & -0.06 & -0.06 & -0.07 & -0.02 & -0.12 & -0.08 \\ {\rm MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $k_2 = 50$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} & \mbox{MDD} & -19 & 57 & 67 & -17 & -0.06 & -0.06 & -0.17 & -0.02 & -0.12 & -0.08 \\ \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c} \mbox{MDD} & -19 & 57 & 67 & -17 & 52 & -16 & -135 & -169 & -226 \\ \hline n_1 = 539 & & & n_1 = 539 & & & \\ \hline TR & 0.03 & 0.03 & 0.03 & -0.04 & -0.07 & 0.01 & 0.04 & 0.00 & 0.00 \\ SD & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.0$                                                                                                                                                                             |            | SR  | -0.20           | 0.13            | -0.27            | 0.16             | 0.08            | 0.30       | -0.03 | 0.22  | -0.12 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | MD  | 0.11            | -0.08           | 0.17             | -0.06            | -0.06           | -0.17      | -0.02 | -0.12 | -0.08 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | MDD | -19             | 57              | 67               | -17              |                 |            | -135  | -169  | -226  |
| $ \begin{array}{c} k_2^{-2} = 20 \\ k_2^{-2} = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 20 \\ k_2 = 20 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 = 10 \\ k_2 = 10 \\ k_1 $  |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $k_1 = 5$  | TR  | 0.03            | 0.03            |                  |                  | -0.07           |            | 0.04  | 0.00  | 0.00  |
| $ \begin{array}{c} & \mbox{SR} & 0.22 & 0.19 & 0.25 & -0.34 & -0.53 & 0.04 & 0.31 & -0.03 & 0.07 \\ \hline \mbox{MD} & -0.09 & -0.05 & -0.10 & 0.05 & 0.06 & -0.02 & -0.02 & -0.01 \\ \hline \mbox{MD} & 46 & 4 & 45 & 38 & 48 & 1 & -39 & 7 & 29 \\ \hline \mbox{TR} & -0.02 & 0.02 & -0.06 & -0.05 & -0.08 & 0.02 & 0.11 & 0.02 & 0.05 \\ \hline \mbox{SD} & 0.01 & 0.00 & 0.01 & -0.06 & -0.02 & -0.01 & 0.00 & 0.00 \\ \hline \mbox{SR} & -0.11 & 0.19 & -0.40 & -0.04 & -0.06 & 0.02 & 0.11 & 0.02 & 0.05 \\ \hline \mbox{SD} & 0.01 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & -0.01 & 0.00 & 0.00 \\ \hline \mbox{SR} & -0.11 & 0.19 & -0.40 & -0.34 & -0.56 & 0.12 & 0.95 & 0.18 & 0.42 \\ \hline \mbox{MD} & 0.03 & -0.05 & 0.06 & 0.05 & 0.07 & -0.02 & -0.12 & -0.04 & 0.01 \\ \hline \mbox{MD} & 63 & 4 & 93 & 38 & 2 & 1 & -104 & 17 & 6 \\ \hline \mbox{TR} & 0.02 & 0.06 & -0.04 & 0.01 & -0.01 & 0.01 & -0.07 & 0.03 & -0.01 \\ \hline \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 \\ \hline \mbox{SR} & 0.19 & 0.50 & -0.04 & 0.01 & -0.01 & 0.01 & -0.02 & -0.02 \\ \hline \mbox{MD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ \hline \mbox{Average across $n_1$ given $k_1,k_2$ & $-1$ \\ \hline \mbox{Average across $n_1$ given $k_1,k_2$ & $-1$ \\ \hline \mbox{Average across $n_1$ given $k_1,k_2$ & $-1$ \\ \hline \mbox{AR} & 0.02 & 0.02 & 0.03 & -0.02 & -0.02 & 0.03 & 0.00 & -0.01 \\ \hline \mbox{SR} & 0.22 & 0.16 & 0.25 & -0.12 & -0.17 & 0.33 & 0.00 & -0.01 \\ \hline \mbox{AR} & 0.02 & 0.02 & -0.03 & -0.05 & -0.06 & 0.04 & 0.09 & -0.01 & 0.04 \\ \hline \mbox{AR} & 0.03 & 0.02 & -0.01 & -0.02 & -0.03 & 0.03 & 0.00 & -0.01 \\ \hline \mbox{AR} & 0.02 & 0.02 & -0.05 & -0.06 & 0.04 & 0.09 & -0.01 & 0.04 \\ \hline \mbox{AR} & 0.03 & 0.02 & -0.01 & -0.02 & -0.03 & 0.03 & 0.00 & -0.01 \\ \hline \mbox{AR} & 0.02 & 0.02 & -0.05 & -0.06 & 0.04 & 0.09 & -0.01 & 0.04 \\ \hline \mbox{AR} & 0.03 & 0.02 & -0.01 & -0.02 & -0.03 & 0.03 & 0.00 & 0.00 \\ \hline \mbox{AR} & 0.02 & 0.02 & -0.05 & -0.06 & 0.04 & 0.09 & -0.01 & 0.04 \\ \hline \mbox{AR} & 0.02 & 0.02 & -0.01 & -0.02 & -0.03 & 0.03 & 0.02 & -0.11 \\ \hline \mbox{AR} & 0.02 & 0.02 & -0.01 & -0.02 & -0.03 & 0.03 & 0.02 & -0.11 \\ \hline \mbox{AR} & 0.02 & -0.01 & -0$                  | $k_2 = 20$ | AR  | 0.02            | 0.02            |                  | -0.04            | -0.07           |            | 0.04  | 0.00  | 0.01  |
| $ \begin{array}{c} & \mbox{MD} & -0.09 & -0.05 & -0.10 & 0.05 & 0.06 & -0.02 & -0.02 & -0.02 & -0.01 \\ & \mbox{MD} & 46 & 4 & 45 & 38 & 48 & 1 & -39 & 7 & 29 \\ \hline TR & -0.02 & 0.02 & -0.06 & -0.05 & -0.08 & 0.02 & 0.12 & 0.03 & 0.05 \\ & \mbox{AR} & +0.02 & 0.02 & +0.06 & -0.04 & -0.06 & 0.02 & 0.11 & 0.02 & 0.05 \\ & \mbox{SD} & 0.01 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 & -0.01 & 0.00 \\ & \mbox{SD} & -0.11 & 0.19 & -0.40 & -0.34 & -0.56 & 0.12 & 0.95 & 0.18 & 0.42 \\ & \mbox{MDD} & 63 & -4 & 93 & 38 & 2 & 1 & -104 & 17 & 6 \\ & \mbox{MDD} & 63 & -4 & 93 & 38 & 2 & 1 & -104 & 17 & 6 \\ & \mbox{TR} & 0.02 & 0.06 & -0.05 & 0.00 & 0.00 & 0.10 & -0.07 & 0.03 & -0.01 \\ & \mbox{MDD} & 63 & 4 & 93 & 38 & 2 & 1 & -104 & 17 & 6 \\ & \mbox{TR} & 0.02 & 0.06 & -0.05 & 0.00 & 0.00 & 0.10 & -0.07 & 0.03 & -0.01 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.10 & -0.07 & 0.03 & -0.01 \\ & \mbox{SD} & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ & \mbox{R} & 0.19 & 0.50 & -0.34 & 0.03 & -0.04 & 0.96 & -3.31 & 0.20 & -0.92 \\ & \mbox{MD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ & \mbox{MDD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ & \mbox{MDD} & 4 & -13 & 38 & 4 & 1 & -24 & 62 & -17 & -53 \\ & \mbox{MDD} & 4 & 0.02 & 0.02 & 0.03 & -0.02 & 0.03 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.22 & 0.06 & 0.02 & 0.03 & -0.02 & 0.03 & 0.00 & 0.00 & -0.01 \\ & \mbox{SD} & 0.00 & 0.00 & 0.01 & 0.00 & 0.01 & 0.00 & 0.00 & 0.00 \\ & \mbox{SR} & 0.22 & 0.16 & 0.25 & -0.12 & -0.17 & 0.33 & 0.00 & 0.00 & -0.01 \\ & \mbox{MDD} & -63 & 1 & 88 & -5 & 41 & 19 & -28 & 111 & 25 \\ & \mbox{R} & 0.22 & 0.16 & 0.25 & -0.02 & -0.03 & 0.03 & 0.00 & 0.00 & -0.01 \\ & \mbox{MDD} & -63 & 1 & 88 & -5 & 41 & 19 & -28 & 111 & 25 \\ & \mbox{R} & 0.27 & 0.016 & -0.02 & -0.03 & 0.03 & 0.05 & 0.02 & 0.01 \\ & \mbox{R} & 0.27 & 0.016 & -0.02 & -0.03 & 0.03 & 0.05 & 0.02 & 0.01 \\ & \mbox{R} & 0.27 & 0.16 & -0.02 & -0.17 & 0.03 & 0.03 & 0.05 & 0.02 & 0.01 \\ & \mbox{R} & 0.27 & 0.16 & -0.02 & -0.03 & 0.03 & 0.05 & 0.02 & 0.01 \\ & \\mbox{R} & 0.27 & 0.16 & $                                                                                                                                                         |            | SD  | 0.00            | 0.00            | 0.01             | 0.00             | 0.01            | 0.00       | 0.00  | 0.00  | 0.00  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | SR  | 0.22            | 0.19            | 0.25             | -0.34            | -0.53           | 0.04       | 0.31  | -0.03 | 0.07  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | MD  | -0.09           | -0.05           |                  | 0.05             | 0.06            | -0.02      |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |     | 46              |                 |                  | 38               | 48              |            |       |       | 29    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $k_1 = 10$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_2 = 20$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_1 = 20$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_2 = 50$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | MDD | 4               | -13             | 38               |                  |                 |            | 62    | -17   | -53   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_2 = 20$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_1 = 10$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $k_2 = 20$ |     |                 |                 |                  |                  |                 |            |       |       |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |     |                 |                 |                  |                  |                 |            |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $k_2 = 50$ AR 0.02 0.02 -0.02 0.00 0.02 0.05 -0.05 -0.01 -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| $k_2 = 50$ AR 0.02 0.02 -0.02 0.00 0.02 0.05 -0.05 -0.01 -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $k_1 = 20$ |     |                 |                 |                  |                  |                 |            |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $k_2 = 50$ |     |                 |                 |                  |                  |                 |            |       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | SD  | 0.00            | 0.00            | 0.00             | -0.01            | 0.00            | 0.01       | 0.00  | 0.01  | 0.01  |
| SR 0.07 0.28 -0.27 0.09 0.14 0.55 -0.14 0.17 -0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| MD -0.01 -0.07 0.07 -0.02 -0.05 -0.12 0.02 -0.03 -0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |     |                 |                 |                  |                  |                 |            |       |       |       |
| MDD 1 55 -5 19 2 -66 -30 -53 -115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | MDD | 1               | 55              | -5               | 19               | 2               | -00        | -30   | -55   | -115  |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

|                            |           |                 | Table 5-        | A. Strategy e    | evaluation sta   | tistics for E    | UR/CHF In        | dex           |               |              |
|----------------------------|-----------|-----------------|-----------------|------------------|------------------|------------------|------------------|---------------|---------------|--------------|
|                            |           | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> | EMA <sub>1</sub> | EMA <sub>2</sub> | MACO          | WMACO         | EMACO        |
|                            |           | 0.07            | 0.01            | 0.01             | 0.07             | n1=255           |                  | 0.00          | 0.07          | 0.02         |
| $k_1 = 5$                  | TR        | -0.07           | -0.01           | -0.01            | 0.06             | 0.10             | 0.01             | -0.02         | -0.06         | 0.03         |
| $k_2 = 20$                 | AR        | -0.01           | 0.00            | 0.00             | 0.01             | 0.02             | 0.00             | -0.01         | -0.01         | 0.01         |
|                            | SD<br>SR  | 0.00            | 0.00<br>-0.03   | -0.01            | 0.00             | 0.00             | 0.00             | 0.00          | 0.00          | 0.00<br>0.14 |
|                            |           | -0.27           |                 | -0.01            | 0.26             | 0.42             | 0.02             | -0.11         | -0.26         |              |
|                            | MD        | 0.03            | 0.02            | 0.01             | -0.05            | -0.10<br>-473    | -0.01            | 0.07<br>-190  | 0.08<br>214   | -0.06        |
| <i>k</i> 10                | MDD<br>TR | -451<br>0.06    | -42             | -724 0.01        | -457             | 0.06             | 161 0.01         | 0.00          | -0.10         | -39          |
| $k_1 = 10 \\ k_2 = 20$     | AR        | 0.00            | 0.00            | 0.01             | 0.00             | 0.08             | 0.01             | 0.00          | -0.10         | 0.02         |
| $k_2 = 20$                 | SD        | 0.00            | 0.00            | 0.00             | 0.00             | 0.01             | 0.00             | 0.00          | 0.02          | 0.00         |
|                            | SR        | 0.00            | -0.03           | 0.03             | 0.26             | 0.00             | 0.00             | 0.00          | -0.46         | 0.00         |
|                            | MD        | -0.09           | 0.02            | -0.01            | -0.05            | -0.07            | -0.01            | -0.03         | 0.09          | -0.01        |
|                            | MDD       | 310             | -42             | -243             | -457             | -617             | 161              | 203           | 205           | -372         |
| $k_1 = 20$                 | TR        | -0.01           | 0.01            | 0.06             | 0.07             | 0.02             | 0.00             | 0.03          | 0.04          | 0.05         |
| $k_1 = 20$<br>$k_2 = 50$   | AR        | 0.00            | 0.00            | 0.01             | 0.02             | 0.00             | 0.00             | 0.00          | 0.00          | 0.01         |
| <i>n</i> <sub>2</sub> = 50 | SD        | 0.00            | 0.00            | 0.00             | 0.00             | 0.00             | -0.01            | -0.01         | 0.00          | 0.00         |
|                            | SR        | -0.03           | -0.03           | 0.26             | 0.37             | 0.05             | -0.05            | 0.02          | 0.15          | 0.17         |
|                            | MD        | 0.02            | -0.02           | -0.05            | -0.08            | -0.01            | 0.00             | -0.03         | -0.04         | -0.06        |
|                            | MDD       | -42             | 263             | -457             | -183             | 161              | -99              | 349           | 254           | 312          |
|                            |           |                 |                 |                  |                  | n1=53            |                  |               |               |              |
| $k_1 = 5$                  | TR        | -0.06           | -0.01           | -0.01            | 0.02             | 0.06             | 0.00             | -0.05         | -0.05         | 0.03         |
| $k_2 = 20$                 | AR        | -0.05           | -0.03           | -0.01            | 0.00             | 0.05             | 0.00             | -0.07         | -0.05         | 0.01         |
| 2                          | SD        | 0.00            | 0.00            | 0.00             | 0.00             | 0.00             | 0.00             | 0.01          | 0.00          | 0.00         |
|                            | SR        | -0.58           | -0.36           | -0.13            | -0.19            | 0.56             | -0.01            | -0.62         | -0.67         | 0.16         |
|                            | MD        | 0.06            | 0.03            | 0.01             | 0.00             | -0.06            | -0.02            | 0.07          | 0.04          | -0.05        |
|                            | MDD       | -62             | -39             | 9                | -30              | -76              | -29              | -36           | -19           | -40          |
| $k_1 = 10$                 | TR        | 0.05            | -0.01           | -0.01            | 0.02             | 0.02             | 0.00             | 0.02          | -0.08         | -0.01        |
| $k_2 = 20$                 | AR        | 0.03            | -0.03           | -0.01            | 0.00             | 0.02             | 0.00             | 0.00          | -0.10         | -0.04        |
| -                          | SD        | 0.00            | 0.00            | -0.01            | 0.00             | -0.01            | 0.00             | 0.01          | 0.01          | 0.00         |
|                            | SR        | 0.35            | -0.36           | -0.32            | -0.19            | -0.02            | -0.01            | 0.07          | -1.11         | -0.35        |
|                            | MD        | -0.08           | 0.03            | 0.00             | 0.00             | -0.01            | -0.02            | -0.03         | 0.08          | 0.00         |
|                            | MDD       | -39             | -39             | -36              | -30              | -69              | -29              | -50           | -37           | -41          |
| $k_1 = 20$                 | TR        | -0.01           | 0.04            | 0.02             | 0.06             | 0.00             | 0.03             | 0.03          | 0.02          | 0.09         |
| $k_2 = 50$                 | AR        | -0.03           | -0.01           | 0.00             | 0.06             | 0.00             | -0.01            | -0.03         | -0.06         | -0.14        |
|                            | SD        | 0.00            | 0.00            | 0.00             | 0.00             | 0.00             | 0.00             | -0.01         | 0.00          | 0.02         |
|                            | SR        | -0.36           | -0.05           | -0.19            | 0.74             | -0.01            | -0.13            | -0.42         | -0.51         | -0.50        |
|                            | MD        | 0.03            | -0.05           | 0.00             | -0.07            | -0.02            | -0.05            | -0.04         | -0.04         | -0.11        |
|                            | MDD       | -39             | -63             | -30              | -27              | -29              | -26              | -35           | -52           | -141         |
|                            |           |                 |                 |                  |                  |                  | given $k_1, k_2$ |               |               |              |
| $k_1 = 5$                  | TR        | -0.08           | -0.01           | -0.02            | 0.03             | 0.06             | 0.01             | -0.04         | -0.04         | 0.03         |
| $k_2 = 20$                 | AR        | -0.06           | -0.01           | -0.02            | 0.00             | 0.03             | 0.00             | -0.04         | -0.02         | 0.02         |
|                            | SD        | 0.00            | 0.00            | 0.00             | 0.00             | 0.00             | 0.00             | 0.00          | 0.00          | 0.00         |
|                            | SR<br>MD  | -0.73<br>0.05   | -0.16<br>0.03   | -0.23<br>0.01    | -0.04            | 0.36<br>-0.07    | 0.07<br>-0.02    | -0.43<br>0.07 | -0.31<br>0.05 | 0.25         |
|                            | MDD       | -142            | -69             | -176             | -0.01<br>-134    | -0.07            | -0.02            | -30           | 53            | -0.05<br>-86 |
| $k_1 = 10$                 | TR        | 0.04            | -0.01           | -0.01            | 0.03             | 0.02             | 0.01             | 0.02          | -0.07         | 0.01         |
| $k_1 = 10 \\ k_2 = 20$     | AR        | 0.04            | -0.01           | -0.02            | 0.00             | 0.02             | 0.01             | 0.02          | -0.05         | -0.02        |
| $k_2 = 20$                 | SD        | 0.00            | 0.00            | -0.01            | 0.00             | -0.01            | 0.00             | 0.01          | 0.00          | 0.00         |
|                            | SR        | 0.19            | -0.16           | -0.28            | -0.04            | -0.12            | 0.07             | 0.19          | -0.59         | -0.09        |
|                            | MD        | -0.08           | 0.03            | 0.28             | -0.04            | -0.03            | -0.02            | -0.02         | 0.07          | 0.00         |
|                            | MDD       | -0.08           | -69             | -78              | -134             | -148             | -0.02            | 26            | 70            | -107         |
| $k_1 = 20$                 | TR        | -0.01           | 0.03            | 0.03             | 0.07             | 0.02             | 0.01             | 0.01          | 0.01          | 0.04         |
| $k_1 = 20$<br>$k_2 = 50$   | AR        | -0.01           | 0.02            | 0.00             | 0.07             | 0.00             | 0.04             | 0.01          | 0.00          | 0.04         |
| <u>7</u> – 55              | SD        | 0.00            | 0.00            | 0.00             | 0.00             | 0.00             | -0.01            | -0.01         | -0.01         | 0.05         |
|                            | SR        | -0.16           | 0.14            | -0.04            | 0.68             | 0.08             | 0.24             | -0.02         | -0.04         | 0.58         |
|                            | MD        | 0.03            | -0.03           | -0.01            | -0.06            | -0.02            | -0.02            | -0.01         | -0.01         | -0.05        |
|                            | MDD       | -69             | 33              | -134             | -84              | 21               | -16              | 126           | 73            | 78           |
|                            |           |                 |                 |                  |                  |                  |                  |               |               |              |

Notes: (1) Table entries have the differences in strategy evaluation statistics between the proposed modified rule and the standard cross-over rules as in section 2.2 of the main text; (2)  $MA_i$  denotes the price cross-over strategy based on  $k_i$  with  $WMA_i$ and  $EMA_i$  denoting weighted and exponential moving averages respectively; (3) MACO, WMACO and EMACO denote the moving averages cross-over strategies; (4) TR is the difference in total return, AR is the difference in annualized return, SD is the difference in annualized std. deviation, SR is the difference in annualized Sharpe ratios, MD is the maximum drawdown and MDD is the maximum drawdown duration (in days).

| Table 6-A. Number of additional trades of the modified strategy |      |              |                 |                 |                  |                  |                  |                  |      |       |       |
|-----------------------------------------------------------------|------|--------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------|-------|-------|
|                                                                 | n1   | $(k_1, k_2)$ | MA <sub>1</sub> | MA <sub>2</sub> | WMA <sub>1</sub> | WMA <sub>2</sub> | EMA <sub>1</sub> | EMA <sub>2</sub> | MACO | WMACO | EMACO |
| FTSE                                                            | 6158 | 20,50        | -8              | 45              | -33              | 21               | -29              | 9                | 92   | 124   | 82    |
|                                                                 |      | 20,100       | -8              | 35              | -33              | 29               | -29              | 39               | 69   | 84    | 71    |
|                                                                 |      | 50,200       | 45              | 26              | 21               | 38               | 6                | 21               | 57   | 26    | 38    |
|                                                                 | 1180 | 20,50        | 10              | 11              | 6                | 8                | 6                | 2                | 24   | 24    | 15    |
|                                                                 |      | 20,100       | 10              | 12              | 6                | 14               | 6                | 7                | 19   | 15    | 16    |
|                                                                 |      | 50,200       | 11              | 9               | 8                | 15               | 3                | 8                | 12   | 16    | 4     |
| NIKKEI                                                          | 6158 | 20,50        | 38              | 30              | 17               | 26               | -5               | 43               | 109  | 103   | 81    |
|                                                                 |      | 20,100       | 38              | 60              | 17               | 20               | -5               | 53               | 59   | 83    | 55    |
|                                                                 |      | 50,200       | 30              | 48              | 26               | 27               | 44               | 38               | 47   | 77    | 63    |
|                                                                 | 1180 | 20,50        | 30              | 48              | 26               | 27               | 44               | 38               | 47   | 77    | 63    |
|                                                                 |      | 20,100       | 9               | 26              | 2                | 15               | -2               | 20               | 17   | 19    | 16    |
|                                                                 |      | 50,200       | 14              | 9               | 5                | 6                | 15               | 9                | 20   | 19    | 14    |
| DAX                                                             | 5035 | 20,50        | 24              | 38              | -16              | 14               | -12              | 16               | 44   | 64    | 64    |
|                                                                 |      | 20,100       | 24              | 29              | -16              | 37               | -12              | 23               | 40   | 67    | 40    |
|                                                                 |      | 50,200       | 38              | 32              | 14               | 7                | 16               | 8                | 37   | 34    | 32    |
|                                                                 | 1194 | 20,50        | 16              | 13              | 2                | 9                | -5               | 2                | 19   | 21    | 14    |
|                                                                 |      | 20,100       | 16              | 7               | 2                | 14               | -5               | 6                | 13   | 24    | 11    |
|                                                                 |      | 50,200       | 13              | 13              | 9                | 7                | 2                | 2                | 12   | 14    | 9     |
| USD/JPY                                                         | 2558 | 5,10         | -46             | -5              | -72              | -37              | -47              | -32              | 41   | 19    | 24    |
|                                                                 |      | 10,20        | -5              | 7               | -37              | -8               | -32              | -5               | 38   | 46    | 45    |
|                                                                 |      | 20,50        | 7               | 8               | -8               | 2                | -3               | -5               | 53   | 46    | 56    |
|                                                                 | 539  | 5,10         | -16             | 0               | -19              | -10              | -11              | -10              | 22   | 11    | 5     |
|                                                                 |      | 10,20        | 0               | -1              | -10              | -2               | -10              | -1               | 11   | 12    | 17    |
|                                                                 |      | 20,50        | -1              | 9               | -2               | 1                | -1               | -2               | 15   | 12    | 17    |
| EUR/CHF                                                         | 2558 | 5,10         | -42             | -3              | -79              | -21              | -44              | -9               | 26   | 33    | 30    |
|                                                                 |      | 10,20        | -3              | 15              | -21              | 12               | -9               | 22               | 57   | 50    | 43    |
|                                                                 |      | 20,50        | 15              | 23              | 12               | 17               | 22               | 16               | 52   | 37    | 39    |
|                                                                 | 539  | 5,10         | -7              | 1               | -13              | -4               | -11              | -2               | 16   | 9     | 10    |
|                                                                 |      | 10,20        | 1               | 9               | -4               | 6                | -2               | 12               | 22   | 17    | 16    |
|                                                                 |      | 20,50        | 9               | 6               | 6                | 7                | 13               | 9                | 17   | 14    | 11    |

Notes: Table entries have the number of additional trades (round-trips) for the modified strategy vs. the standard strategy. A negative number indicates less trades.  $n_1$  denotes the number of evaluation days and corresponds to S1 for the top part of each

series panel and to S3 or S4 for the bottom part of each series panel.