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1. Introduction 

 Price momentum is the empirical finding that the price of an asset that has been rising in 

the recent past will continue to rise in the near future (Jegadeesh and Titman 1993, Fama and 

French 2008, Moskowitz et al. 2012, Asness et al. 2013).  In practice, the classic approach to 

momentum investing usually consists of evaluating the performance of an asset over one or 

multiple historical time windows, typically of less than a year, to decide whether and how much 

to allocate to that asset.  The evaluation of historical performance is repeated at regular intervals 

ranging from a few weeks to a few months depending on factors such as tax implications, trading 

costs and the expected impact on the strategy’s performance. 

There are three major drawbacks to this classic approach.  First, it usually relies on a back-

testing trial-and-error process that eliminates features once and for all that are not deemed to be 

valuable.  While the number of driving features that are eventually selected may seem small1, the 

trial-and-error process may have examined and eliminated many combinations of features before 

selecting a final few to manage a strategy.  The process may also disregard features altogether 

perhaps on the basis of experience without considering the multiple ways in which a feature could 

be computed.  Momentum, for instance, could be calculated using many techniques around date 

intervals and smoothing of the price history.   

The second problem is the ease with which historical data can be overfit, and the lack of a 

mechanism within the classic approach that checks for and minimizes overfitting.  Given a price 

time series and other historical data, strategy parameters can always be adjusted to maximize target 

                                                           
1 The driving features selected can be a handful of indicators such as historical momenta over various time-

windows, a minimum profitability target for dual-momentum approaches, a trailing stop loss threshold and a timing 

rule for rebalancing portfolios. 
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performance metrics.  When such adjustments result in overfitting, the strategy is unlikely to 

perform as expected going forward. 

The third problem is the under-performance of classic momentum strategies at market 

turning points.  This problem arises from the inherently backward-looking nature of momentum 

trading strategies.  Consider a strategy investing in a single asset based on an assessment of price 

momentum being up or down.  When prices rise continuously over a long-enough period, the 

strategy is invested into that asset and gains in value.  When prices fall continuously over a long-

enough period, the strategy may be in cash or short the asset, respectively maintaining its value or 

appreciating.  Turning points, however, are where the strategy loses value and gives up some of 

its cumulative gains since it takes time to conclude that momentum has turned negative after a 

period of rising prices, or has turned positive after a period of falling prices2.  

Our intent in this paper is to outline how machine learning techniques can be used to 

mitigate the issues discussed above and improve the risk-return trade-off in momentum strategies 

beyond what is possible using classic approaches.  Machine learning strategies have the inherent 

ability to learn from and adapt to changing market conditions using more numerous and more 

complex combinations of features than is practically feasible in a classic approach.  Polynomial 

combinations of various features, for example, can be created in an attempt to identify non-obvious, 

complex non-linear patterns.  While the total number of features used in machine learning may 

                                                           
2 Over time horizons measured in decades that range across multiple market cycles, the cumulative impact of the 

temporary losses in these transition turning periods is offset by the gains made in favorable periods.  That is because 

the universe of investable assets that are selected for an investment strategy will of course have a positive future 

expected rate of return over the long run, a characteristic that momentum approaches are very good at capturing.  

From a practical point of view, however, investors have been known to display limited patience and they may 

experience sudden spikes in personal risk aversion just as losses accumulate or money sits in cash while markets 

rise.  Increasing the confidence of investors in an investment approach when performance suffers is a key objective 

of any asset management business.  This can be partially accomplished through a better, demonstrably more robust 

design of investment strategies as suggested in this paper.   
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seem high relative to a classic approach, techniques can be used to check for and minimize 

overfitting.  Consequently, machine learning strategies can be designed to use far more features 

than their classic counterparts without necessarily overfitting data.  

To demonstrate our approach, we focus in this paper on applying logistic regression 

techniques to the simplest form of time-series dual-momentum investing, namely using the price 

history of a single asset to assess whether to invest in that asset or move to cash at the end of each 

trading day for our long-only strategy, or establish a short position instead of cash in the case of 

the long-short strategy.  To highlight the key decision points in designing this type of strategy, we 

do not use any non-price data nor derivative indicators such as futures or options data, but solely 

the daily adjusted closing price of the asset.  The features we selected in our algorithm are the same 

types of performance metrics used in classic approaches that may combine price momenta and 

drawdowns over various historical time intervals.  

The rest of this paper is organized as follows.  Section 2 presents the securities price data.  

Section 3 describes our approach in building the time-series dual momentum trading strategy.  

Section 4 describes the polynomial features, their corresponding learned parameters, and the 

relationship between features and investment performance.  Section 5 documents the long-only 

strategy’s investment performance when applied to the S&P 500 Index (SPX).  Section 6 compares 

the performance of the long-only and long-short strategies applied to the S&P 500 Index, and 

documents the long-only strategy’s performance when applied to equity indices other than SPX.  

We also discuss the impact on investment performance of periodically retraining the algorithm’s 

parameters.  Section 7 concludes the paper. 
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2. Data 

The data used in this study is obtained from the Bloomberg database.  Our main analysis 

is carried out on the SPX between December 30, 1927 and December 12, 2018, a sample that 

consists of 22,846 daily prices spanning over 90 years.  In addition, we analyze the following seven 

equity indices: S&P Small Cap 600 Index (SML), S&P Mid Cap 400 Index (MID), FTSE 100 

Index (UKX), FTSEurofirst 300 Index (E300), Tokyo Stock Exchange Price Index (TPX), Dow 

Jones Industrial Average Index (INDU), and Dow Jones Transportation Average Index (TRAN).  

Table 1 summarizes the time periods analyzed in this paper for each of these indices. 

The performance metrics used in this paper are described in Table 2.  For simplicity, all 

Sharpe ratios are calculated using a constant one percent annual risk-free rate.  All Sortino ratios 

are calculated using a constant one percent Minimum Acceptable Return.  All computations are 

based on the convention of 252 business days per calendar year and 21 business days per calendar 

month.  Table 3 summarizes the key performance indicators of our sample indices over their entire 

respective sample periods.  

 

3. Methodology 

 In this section, we describe two base cases, the buy-and-hold approach and an 

implementation of a classic time-series dual-momentum strategy.  That is followed by a 

description of our machine learning approach that recasts momentum-investing into a 

classification problem, namely a problem where the decision of whether to invest or move to cash 

must be made daily based on the binary prediction of whether investing will be profitable or not 

over a target future time horizon.   
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3.1 Base Cases 

3.1.1 Buy-and-hold Approach 

 In the buy-and-hold approach, the investment decision is to invest on a specific date and 

hold the position irrespective of market conditions.   

3.1.2 Classic Time-series Dual-Momentum Strategy 

In a classic time-series dual-momentum approach, the investment decision each day is 

whether to invest in an asset or move to a safer asset that can be cash or treasury bonds for instance.  

Whilst there are multiple ways in which this type of strategy can be implemented and refined, we 

keep our base case simple to provide a clear comparison with the machine learning approach.  We 

construct the base case in the following way.  The momentum, i.e. the percentage price change of 

a security, is calculated over a historical time horizon of twelve months, skipping the most recent 

month (Asness et al. 2013)3.  If momentum is higher than a minimum annual profitability threshold 

𝛿, which we set in this paper at 5 percent4, the decision is to invest in the asset.  If momentum is 

lower than the threshold, the portfolio is moved to cash in the long-only strategy, or moved to a 

short position in the long-short strategy.  This investment decision is revisited at regular intervals 

                                                           
3 We skip the most recent month to avoid 1-month stock return reversal documented in the finance literature 

(Jegadeesh 1990, and Grinblatt and Moskowitz 2004). 
4 We select a minimum profitability threshold of 5 percent in this study for simplicity.  Other values could be 

selected based on experience with the underlying asset being invested in.  Intuitively, this means that we are 

requesting the algorithm to predict that any annual price rise of less than 5 percent would be a loss.  This may be 

viewed as an attempt to increase the precision of the results, since the algorithm will only predict a gain when a 

price is predicted to rise well above its current level rather than just to remain flat.  However, whether precision 

really is increased will depend on the volatility of the asset and the length of the future return horizon H.  If the 

horizon is far away in the future, a 5 percent annual gain may not be particularly meaningful, while for short 

horizons it may indicate a rapid rise that could have a good chance to continue in the near term.  If volatility 

suddenly spikes however, a 5 percent gain, even if achieved over long time horizons, can be reversed in less than 

one trading day. 
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regardless of market conditions.  In this paper we select a rebalancing frequency of one month for 

simplicity. 

3.2 Machine Learning Approach 

3.2.1 Logistic Regression Algorithm 

In the machine learning approach, the investment decision of whether to invest in an asset 

or move to cash is made daily in the following way.  We build a logistic regression model that 

makes a binary daily prediction of whether the return over a certain future time horizon H5 is likely 

to be positive.  To incorporate the approach of dual-momentum investing, we define a profitability 

vector Y that the algorithm will attempt to predict as 

𝑌 =  (

𝑦1

⋮
⋮

𝑦𝑚

) 

where each daily value 𝑦𝑖  is either one or zero depending on whether future profitability 𝑝𝑖
6 

exceeds a minimum annual profitability threshold 𝛿, namely: 

𝑦𝑖 =  {
1 𝑖𝑓 𝑝𝑖 ≥ 𝛿
0 𝑖𝑓 𝑝𝑖 < 𝛿

 

We seed our model with two sets of basic features, momenta and drawdowns, that can be 

readily calculated from the historical prices of the asset.  Since momentum is an auto-correlation 

problem, where we essentially try to predict the performance of an asset using that asset’s historical 

                                                           
5 In practice, most classic momentum strategies will re-evaluate a portfolio somewhere between each trading day 

and once a month – or 21 business days.  For tax reasons, which are not a consideration in this paper, portfolio 

rebalancing may be limited to once per quarter or even slower.  We limit our discussion of logistic regression to 

predictions of performance over future time horizons that range from one to 21 business days, with the expectation 

that the predictive power of the algorithm will fade as the time horizon gets longer. 
6 Future profitability 𝑝𝑖  is measured as the annualized percentage change in price over a time horizon H, specifically:   

𝑝𝑖 = (
𝑃𝑟𝑖𝑐𝑒𝑖+𝐻 

𝑃𝑟𝑖𝑐𝑒𝑖
)

252

𝐻
− 1 
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prices, other financial metrics that are purely functions of price such as the Sharpe or Sortino ratio, 

or upside and downside volatility, could also be incorporated in our list of features.   

The belief implied by our selection of features is that observing the change in the shape of 

the price history using multiple historical time windows for momenta and drawdowns is more 

pertinent than considering other metrics to predict short-term profitability.  Using momentum over 

multiple time frames dovetails the classic approach of using cross-over momentum for investment 

decisions, while adding drawdown information is conceptually equivalent to enabling the use of 

stop losses in a classic approach where trailing stop losses are typically triggered after a drawdown 

threshold is breached.  The intent therefore is that by providing momentum and drawdown 

information over multiple time frames, the algorithm will learn which of these features are 

relatively more important than others as market conditions evolve and weigh each accordingly as 

it tries to predict future performance. 

The momentum features we use are based on the following numbers of business days: 30, 

60, 90, 120, 180, 270, 300 and 360.  Drawdowns are evaluated on 15, 60, 90 and 120-day time 

windows.  These time-frames are based on experience and broadly match what would be expected 

to be pertinent historical horizons on which to evaluate short and long-term momenta, losses and 

stop-loss triggers.  Our objective is not to maximally optimize our set of initial features but rather 

to demonstrate what a logistic regression algorithm can deliver using a set of features that should 

seem intuitively reasonable to experienced asset managers.  Note that the profitability vector Y as 

well as all features are dimensionless numbers.  Features are normalized to value between -1 and 

+1 with zero mean prior to training the algorithm. 
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To enable the algorithm to identify non-linear patterns in a simple way, we let it create new 

features automatically from the basic features it was seeded with.  This is done by adding as new 

features the polynomial combinations of the basic features up to a specified polynomial degree.  

For instance, suppose that we let the algorithm create quadratic combinations of our initial features, 

and that feature 𝑥1 represents the six-month momentum on a particular day while feature 

𝑥2 represents the drawdown over a two-month window.  The algorithm will then create new 

features as 𝑥1𝑥2, 𝑥1
2 and 𝑥2

2 and use these in addition to the original features 𝑥1 and 𝑥2 to try to 

predict performance.  The degree of the polynomial that the algorithm is allowed to use in creating 

new features is a parameter in logistic regression that we discuss further in Section 3.2.4.  

Denoting the value of the features on each day with time index i as a vector 𝑋𝑖  with 

elements 𝑥1
(𝑖)

, 𝑥2
(𝑖)

, …, 𝑥𝑛
(𝑖)

, and the weights assigned to these features as a vector 𝜃 with elements 

𝜃1, 𝜃2, …, 𝜃𝑛, our hypothesis is that whether 𝑦𝑖 is positive or not can be predicted as follows: 

ℎ𝜃(𝑥) = 𝑔(𝜃𝑇𝑥) 

where g is the sigmoid function 

𝑔(𝑧) =  
1

1 +  𝑒−𝑧
 

and where we predict ℎ𝜃(𝑥) = 1, when 𝜃𝑇𝑥 > 0, and ℎ𝜃(𝑥) = 0, when 𝜃𝑇𝑥 ≤ 0. 

To minimize the possibility of overfitting the available data, we split our data samples into 

two distinct sets referred to as training sets and test sets7.  The daily weights 𝜃𝑖 of each feature 𝑥𝑖 

are found by minimizing the prediction error between actual future performance and the 

performance predicted by the function ℎ𝜃over training sets of historical data, while investment 

                                                           
7 We omit the cross-validation set in this study due to limited data.  To show the generalizability of the model, we 

test our strategy on other U.S. and international equity indices (see Section 6.1). 
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performance reported in this study is calculated solely on the test sets.  Since we let the algorithm 

create new features through polynomial combinations of the seed parameters, the total number of 

features can rise quickly as the specified degree of acceptable polynomials increases.  This in turn 

could lead to overfitting the training set data and result in poor strategy performance when the 

model is applied to test sets.  In order to address this issue we use regularization, which enables 

the algorithm to minimize the relative influence of some features without a-priori modifying the 

set of features or changing the form of our hypothesis.  Incorporating a regularization parameter λ 

to reduce potential overfitting, we minimize the prediction error on our training set data and derive 

the corresponding weight vectors 𝜃 by minimizing the following cost function: 

𝐽(𝜃) =  −
1

𝑚
∑ {𝑦(𝑖) 𝑙𝑜𝑔 (ℎ𝜃(𝑥(𝑖))) + (1 − 𝑦(𝑖)) 𝑙𝑜𝑔 (1 − ℎ𝜃(𝑥(𝑖)))} +

𝑚

𝑖=1

𝜆

2 𝑚
 ∑ 𝜃𝑗

2

𝑛

𝑗=1

 

3.2.2 Error Metrics 

The design of our logistic regression algorithm requires a number of inputs that we posited 

in Section 3.2.1 based on experience.  These include the selected basic features as well as a 

minimum annualized performance threshold used when assessing future profitability.  The 

algorithm also requires inputs that we have mentioned but not quantified, such as the size of the 

training set, the value of the regularization parameter λ and the degree of polynomials used to build 

non-linear features. 

To verify that the values selected for these parameters do not lead to overfitting our data, 

we will  measure the accuracy of the algorithm on each training and test set using precision, recall 

and F-Scores as defined in Table 2.  For all days predicted to have positive future performance, 

precision measures which fraction actually had positive performance.  In contrast, for all days for 

which future performance is actually positive, recall measures which fraction that was correctly 
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predicted as having positive future performance.  The F-Score is a combination of these two 

metrics such that higher F-Scores are more desirable and very low precision or recall yields a 

relatively low F-Score.   

3.2.3 Periodic Retraining of the Algorithm 

 When computing the investment strategy with our machine learning approach, model 

weights are trained on a subset of the available data, the training set, that is distinct from the data 

used to compute that strategy.  This leads to two design questions, namely how large should the 

training set be, and how often should the training set be refreshed in order to update model weights 

with recent data as the strategy computation progresses in time? 

Regarding the size of the training set, larger training sets are helpful in preventing 

overfitting but result in a smaller range of dates available for computing the investment strategy.  

When designing a strategy focused on equities, for which market cycles lasting 7 to 10 years are 

defining characteristics and primary drivers of returns, it is sensible to train the algorithm over a 

number of these market cycles.  In the case of SPX where data is available over 90 years between 

1927 and 2018, using 40 percent of the data for the training set would allocate 36 years to the 

initial training of the algorithm, equivalent to three or more typical equity market cycles.  The 

strategy could then be computed from the mid 1960’s to 2018, or about 50 years that include 

multiple market cycles and dramatic changes in all aspects of the financial markets.  The results 

discussed in this paper are based on a 40 percent data allocation to training sets, although we found 

that allocating anywhere over 30 percent for training, namely three or more typical market cycles, 

yields qualitatively similar results.  
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Figure 1 displays the costs and error metrics of training sets containing 30 percent to 60 

percent of all available dates in a randomized order, the remaining randomized dates being equally 

split between two test sets.  In all cases, the values in the test sets are comparable to those of the 

corresponding training set, suggesting that overfitting is not likely an issue.  The figure also shows 

that the values of the error metrics do not vary significantly with the size of the training set, 

suggesting that training set sizes in that range are not likely to materially impact the behavior of 

our model.    

We now turn to a discussion of the frequency at which we retrain the parameters of our 

algorithm.  Despite the significant size of a training set containing 40 percent of available data, it 

is unlikely that an algorithm trained on data from 50 years ago could be relied upon to make 

investment decisions today.  The solution to this issue is to periodically retrain the algorithm at the 

same time as the strategy is computed marching forward in time.  This can be done by sliding the 

time window of the training set forward while the strategy advances in time, retraining the 

parameters, i.e. recomputing the weights θ over the new training set, and using these new feature 

weights to carry on computing the strategy. 

This introduces a new parameter in the algorithmic design, the frequency at which the 

training set should be changed.  Since the algorithm is trained on approximately three market 

cycles, intuitive values for the retraining frequency could be between a half or a full market cycle, 

i.e. between five and ten years. While this seems reasonable for a strategy allocating to a single 

asset class for which all components can be expected to fall within broadly concurrent market 

cycles, it is not clear that a fixed retraining frequency specified a-priori would be sensible for multi 

asset class investment strategies.  The length and timing of market cycles in bonds, equities and 
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commodities are vastly different, while currencies and other assets might be driven by the changing 

economic policies of central banks and governments over time.  

To improve the likelihood that our algorithm adapts to and performs with different assets, 

we developed an approach that enables it to learn autonomously when the time has come to retrain 

itself, as follows.  The algorithm first trains its parameters on the initial training set, in our case 40 

percent of the available data.  The strategy computation is initiated on the first date of the test set 

(after the initial training set) using these parameters, and the algorithm checks the convergence of 

the cost function J(θ) on the increasing set of dates of the test set as the strategy is computed.  

Convergence is deemed to be achieved when the annualized rate of decay of the cost function falls 

below a specified tolerance level which we set at 0.01 percent for simplicity.  Once convergence 

is achieved, the training set is slid forward so that it ends at the date before retraining occurs, and 

the strategy continues to be computed with the retrained parameters.  Over time, the retraining 

frequency is averaged across all training sets to smoothly incorporate the algorithm’s experience 

across different market regimes.  To minimize computation time, convergence is checked at 

regular time intervals instead of at every time step.  We have used an interval of 50 trading days, 

corresponding to a calendar period slightly larger than two months.  

Applying this approach to SPX using 40 percent of the data for training sets, cubic 

polynomials for our hypothesis function and a regularization parameter λ of one, the algorithm 

creates seven different training and test sets with an average retraining frequency in the range of 

1,900 business days, or slightly less than calendar 8 years.  The retraining frequencies found while 

computing the SPX trading strategy on each of the seven test sets are shown in Figure 2. 
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To clarify what the test sets correspond to, consider that the logistic regression builds the 

investment strategy by walking forward in time and retrains its parameters when necessary.  Each 

time a retraining event occurs, a new training set of data is created by sliding the training data 

window forward, the feature weights are recalculated so as to minimize the cost function J(θ), and 

the strategy thereafter uses these new weights to predict future profitability on a daily basis and 

execute its investment decision. 

Therefore, while the strategy is computed by walking forward over a continuous set of 

dates from August 3, 1964 to December 12, 2018, the date record is conceptually split into different 

“test sets” that each corresponds to the range of dates when the weights calculated from a particular 

training set are used.  For instance, the first test set corresponds to the period of days over which 

the investment strategy is computed using the feature weights calculated in the first training set, 

and so on. 

The complete layout of these training sets, test sets and their error metrics is shown in Table 

4.  Cost and errors in the test sets are uniformly within a 10% range of the respective metrics in 

the training sets.  None of these metrics change significantly across training or test sets, despite 

the underlying data representing vastly different market regimes over a 90-year period.  This 

suggests that overfitting is not likely an issue in our model. 

3.2.4 The Degree of Polynomial Features and the Prediction Time Horizon 

Our logistic regression algorithm predicts whether profitability over a certain future time 

horizon H is likely to be above a specified minimum threshold.  To predict profitability, which we 

anticipate will not be a simple linear function of the basic momentum and drawdown features, we 

allow the algorithm to build polynomial combinations of these basic features.  Conceptually, 
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should future performance be a complex non-linear function that involves the basic features and 

perhaps even some other market factors that were not incorporated in our model, the new 

polynomial features will correspond to some of the lower-level polynomial terms in the Taylor 

series expansion of that function.  Incorporating these terms in the model should thus help capture 

some aspects of the complex non-linear relationship between future performance and basic 

features, which linear models such as the classic momentum approaches are unable to do.   

This leads to two other design questions, namely what degree of polynomials should be 

used, and how far into the future should we attempt to predict performance, i.e. how many days 

should H represent? 

With respect to the degree of polynomials, Figure 3 shows the maximum performance 

improvement over buying and holding SPX across all prediction time horizons ranging from one 

day to one month that are achieved when using a long-only approach with polynomials of degrees 

2, 3 and 4.  Quadratic polynomials improve annualized returns by about 10 percent over buy-and-

hold SPX, while cubic and fourth-order polynomials respectively improve returns by 31 percent 

and 13 percent.  Table 5 shows the performance of the investment strategy using different degrees 

of polynomials8.  Letting the algorithm create new polynomial features significantly improves the 

balance of risk versus return of the investment strategy relative to SPX as measured by maximum 

drawdowns, average drawdowns and Sharpe ratios.  While using quadratic polynomials does not 

produce higher absolute returns than SPX, the risk-adjusted returns as measured by Sharpe ratios 

are slightly higher than those of SPX.  The power of logistic regression when using higher degree 

polynomials is visible in the results of cubic and higher order polynomials.  The algorithm employs 

a total of 455 features with cubic polynomials, and 1,820 features with fourth-order polynomials.  

                                                           
8 Note that Figure 3 and Figure 5 are based on different prediction horizons.  While Figure 3 shows the maximum 

performance across all prediction horizons, Figure 5 shows the performance based on a 3-day prediction horizon.  
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In both of these cases the resulting optimization problem, namely calculating the weights that 

minimize the cost function across that number of features for approximately 10,000 individual 

dates in each training set, is easily solved on a modern laptop computer within a few minutes. 

To select our time horizon H, we compare the strategy’s results with H ranging from 1 to 

21 days using both cubic and fourth order polynomials.  Figure 4 compares the annual return, 

Sharpe ratio, maximum and average daily drawdowns of the investment strategy using cubic 

polynomials over the time horizons ranging from 1 to 21 days.  As shown, the predictive power of 

the algorithm eventually diminishes as the time horizon increases.  Predicting performance three 

business days into the future seems to be optimal across all of the strategy’s key performance 

metrics.  Interestingly the worst performance corresponds to trying to predict the next day’s 

performance.  This is best understood when considering that the probability distribution of SPX 

daily returns is only slightly positive, on the order of a few basis points, and looks normally 

distributed across positive and negative returns.  That means that daily returns are almost randomly 

positive or negative, and trying to predict that outcome using only price itself is unlikely to be 

successful.  Over longer time horizons, the batting average in favor of positive performance must 

shift for the index to eventually return positive performance.  However, why three days turns out 

to be an optimal horizon instead of four or more days is likely unknowable and not a result we 

anticipate would hold for other types of equities, such as single stocks or small capitalization 

indices, or other asset classes. 

The use of fourth-order polynomials yields improvements over SPX in either return or risk 

for all time horizons greater than one day as shown in Figure 5.  The level of these improvements 

is broadly stable between 2 and 10 days, although results achieved using cubic polynomials are 

more attractive from an investment point of view and involve less complexity in its features. 
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It is possible that using higher than fourth-order polynomials and experimenting with 

different time horizons and basic features would result in greater improvements in investment 

performance over SPX than those shown in Table 5.  Our objective is to use intuitive momentum-

based features that we believe from experience are well suited to capturing momentum in large 

capitalization stocks.  Just as we did not attempt to optimize the classic base case in this paper, we 

are not attempting to optimize our logistic regression approach for SPX.  For simplicity of 

comparison of these approaches, we select the cubic polynomial approach for our discussion of 

logistic regression through the remainder of this paper.  This is the first order of polynomials that 

we expect will capture meaningful non-linear relationships between future performance, momenta 

and drawdowns. 

Figure 6 summarizes the improvement over SPX using logistic regression with cubic 

polynomials and a three-day prediction time horizon.  The algorithm improves annualized returns 

by 31 percent while reducing average daily drawdowns by 30 percent from -11.2 percent for SPX 

to -7.8 percent for the strategy.  This in turns lowers volatility and improves the Sharpe ratio by 

56 percent from 0.35 for SPX to 0.54 for logistic regression. 

3.2.5 Regularization Parameter 

The purpose of the regularization parameter λ is to minimize the tendency of an algorithm 

to overfit data.  It adds a penalty to each feature in the cost function in the form of λ×θ2 that forces 

θ to be small.  Since the magnitude of the feature weights θ in the training sets ranges principally 

between -1 and +1 as will be shown in Section 4.1 below, the penalty will only be significant for 

weights with absolute value of magnitude close to 1.  Features with weights closer to zero will not 

be much affected by λ since the penalty term θ2 will be much smaller than θ. 
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For features whose weights approximately equal ±1, a value of λ=1 will add a penalty of 

the same order of magnitude as the existing term for θ in the cost equation.  A value of λ=10 would 

add a penalty about ten times larger, and so on.  Therefore, we anticipate that the regularization 

parameter will start having an impact on limiting overfitting with a value close to 1.  Selecting a λ 

of higher order of magnitude will significantly reduce the weight of these features the algorithm 

deemed the most meaningful in the first place, giving them smaller values that closer to those of 

less important features.  

To take advantage of the benefits of regularization with regards to overfitting while 

maintaining a meaningful weight gap between the most and the least significant features within 

each training set, we select a value of λ=1 for all investment strategy results presented in this paper. 

 

4. Polynomial Features 

We now discuss the feature weights θ computed by the algorithm with a view to building 

some intuition into how logistic regression manages the input parameters, in our case consisting 

of historical momenta and drawdowns, and their polynomial combinations. 

4.1 Features and Their Weights across Training Sets 

In our current analysis of SPX with the basic features described in section 3, using cubic 

polynomials results in a total of 455 features to try and fit each training set data comprising 9,138 

dates, or 40 percent of the total available.  Since θ is a vector of feature weights, each θ vector 

contains as many elements as there are features.  Figure 7 shows the ratio between the maximum 

and minimum value of the weights in each θ vector calculated for each of the 7 training sets in the 

strategy.  That ratio is a measure of the relative importance of the features within each training set.  
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Its order of magnitude ranges from about 1,000 to 10,000, which means that some features will be 

up to 10,000 more important than others in some of the test sets. 

A more detailed summary of the range of the weights within each training set is shown in 

Figure 8, including their highest and lowest values, their average, and values above and below one 

standard deviation as indicated by the top and bottom edges of the rectangular box across each 

vertical line.  Despite the changing relative importance amongst the weights demonstrated in 

Figure 7, the range of the weights is stable across the entire time history from the year 1927 through 

2018. 

Figure 9 presents a different view of the model weights found for each feature across all 

training sets over time from 1927 to 2018.  The reference number of each feature on the horizontal 

axis refers to the order in which that feature was created by the algorithm, which could be 

arbitrarily changed by changing the order in which basic feature are specified.  Therefore, the chart 

is not to be viewed as a continuous curve.  Rather, for each feature on the horizontal axis, the 

vertical axis displays the range of weight values that all the training sets have assigned to that 

feature.  Note that the same feature can contribute positively or negatively over time to the 

prediction of profitability.  The magnitude of the weights across features is fairly stable with most 

weights falling between -1 and +1. 

A detailed picture of the changing importance of different features over time is presented 

in Figure 10.  The two inset figures show respectively the ten most and least important features 

across the 7 training sets.  The vertical axis represents the reference number of each feature, 

ordered so that the numbers below the horizontal blue line represent the basic seed features we 

have specified, the set of features between the blue and red lines represents those constructed from 
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quadratic polynomials, and cubic order features are above the red line.  The salient characteristic 

of these charts is the variation in the features that each training set has assessed as most or least 

important amongst the 455 being analyzed.  None of the features are uniformly important or 

disregarded over time, and the variability extends across the range of linear, quadratic and cubic 

features. This validates the choice to present results in this paper derived from higher than 

quadratic polynomials to enable the logistic regression to capture some aspects of the expected 

non-linear relationship between performance, momentum and drawdowns. 

Figure 11 displays an analysis of the feature weights calculated in the first training set.  The 

values in Figure 11 essentially expose the details within the leftmost vertical bar in Figure 8.  

Different features across all polynomial orders contribute positively and negatively to the 

prediction of performance, and a significant number of features are mostly disregarded with 

weights either close to zero or much smaller than the largest weights.  Figure 11-d displays the 

distribution of the absolute value of features weights, which is the true measure of the contribution 

of each feature, whether positive or negative, in predicting future performance. 

Figure 12 shows that a majority of features are assigned low and different relative weights 

within each training set, which means that the investment strategy will be driven by a changing 

subset of features as time progresses and the algorithm retrains its weight parameters. Overall, 

these results indicate that none of the features dominate the predictive power of the algorithm.   

4.2 Decision Boundaries: Visualizing the Relationship Between Features and Future Performance 

To develop further insight in the behavior of the algorithm, this section presents a 

visualization of the relationship between a sample of the model’s features and the three-day future 

performance which the algorithm is designed to predict.  Recall that future performance is 
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represented by the vector denoted as Y in our algorithm.  The algorithm does not actually predict 

the level of future performance, but only whether performance is likely to exceed a minimum target 

threshold of δ.  If at a given date in a training set for which future performance is known, that 

performance is above the threshold, the value of Y on that date is 1.  If the performance falls below 

the threshold, Y is set to zero.  

Figures in this section display the scatter of Y relative to various combination of features, 

with green representing dates where three-day performance is above the threshold, and red where 

it falls short.  Were some combinations of features to represent perfect ways to predict positive 

versus negative performance, the corresponding scatter plots would neatly outline decision 

boundaries, namely regions containing mostly green data separate and apart from regions 

dominated by red data. In contrast to a classic momentum approach that uses a handful of technical 

indicators, machine learning approaches can repeatedly be trained over large numbers of 

combinations of complex features to try and identify non-linear patterns, or decision boundaries, 

which delineate market conditions where future performance is expected to meet the threshold 

target. 

Figure 13 shows one example of the relationship between future performance and two of 

the features initially selected for the algorithm: the short-term historical momentum of 30 days, 

somewhat longer than one calendar month, and a longer-term momentum of 120 days 

corresponding to about 6 months.  These types of features that mix short and long historical time 

horizons are commonly used in technical trading algorithms based on cross-over momentum.  It 

would be tempting to conclude from Figure 13 that when short-term momentum is positive or even 

slightly negative, the three-day future performance would seem to be dominated by green data, 

indicating that the strategy is likely to meet the target profitability threshold. Whether this is 
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statistically meaningful or even pertinent in relation to other available combinations of features, is 

represented by the weights that the training set finally assigns to each feature when minimizing 

the cost function J(θ). 

One subtlety of these two-dimensional scatter plots is that the color plotted last dominates 

the visual effect even in areas where green and red data may be equally concentrated.  To 

demonstrate this, Figure 13 shows the same scatter relationships, with the positive performance 

test (green data) plotted last on the left chart, and plotted first on the right chart.  The correct 

interpretation of these charts requires a three-dimensional examination of these relationships, or a 

careful review of these twin sets of two-dimensional graphs.  

For simplicity, we display in this section the two-dimensional views of decision boundaries 

with the understanding that most of the differentiation between areas dominated by positive or 

negative performance actually lies on the edges of these scatter charts.  Figures 14 to Figure 16 

show the relationship in the last training set of SPX between three-day future performance and a 

sample of linear, quadratic and cubic polynomial features respectively.  In the case of quadratic 

and cubic features, we simply label the features using their reference number from 0 to 454.  The 

point is not as much to identify the exact polynomial combination displayed, as it is to observe the 

vast complexity of relationships the logistic regression algorithm is able to use to try and predict 

performance. 

To summarize, the logistic regression algorithm attempts to capture the relationships 

between features and future performance in each training set, examples of which are provided in 

Figures 13 through Figure 16, reflect those in the weights ascribed to each feature, and then predict 

on each date in the test set whether performance is likely or not to exceed the threshold.  This daily 

 Electronic copy available at: https://ssrn.com/abstract=3325656 



22 

 

binary prediction point in turn drives the investment decision for the single asset the strategy 

allocates to. 

 

5. Long-Only Investment Performance 

This section presents the investment results of the long-only logistic regression algorithm 

applied to SPX.  The algorithm is designed in the following manner that summarizes our 

presentation to this point.  The algorithm uses cubic polynomials to build non-linear features from 

the set of basic features specified before the computation starts.  These input features include 

drawdowns and momenta over various historical time windows, normalized to zero-mean over 

time within a range of -1 to +1 to prevent unintended bias in the resulting weights.  The algorithm 

uses a regularization parameter λ equal to one to lower the chance of overfitting data.  Its design 

is intended to predict each day whether the performance of SPX is likely to exceed a minimum 

threshold δ of 5 percent annually over the following three business days.  If the algorithm predicts 

a profitability lower than this threshold, the long-only strategy moves to cash at day end while the 

long-short strategy establishes a short position in SPX at day end.  Otherwise the strategy is or 

remains invested into SPX at market close. Slippage, trading costs, borrowing costs and tax 

implications are ignored. 

The available historical price data of SPX is partially allocated to an initial training set 

containing 40 percent of the data from December 30, 1927 to June 30, 1964, and the algorithm 

learns autonomously as the strategy walks forward in time when to slide that training window to 

retrain the weights θ it ascribes to each feature. 

As noted in Section 3.2.4, using higher order polynomial features yields better investment 

results than either linear or quadratic approaches.  Our objective in this paper is not to optimize a 
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momentum trading strategy for SPX, but to demonstrate that a machine learning approach that is 

straightforward to implement and inexpensive to compute can deliver improvements in investment 

results not only for SPX over a buy-and-hold approach and the classic base case described in 

section 3.1, but also when applied without modification to other assets within the same asset class. 

Table 5 summarizes the investment performance of the logistic regression long-only 

strategy.  It generates an 8.6 percent annual return with a Sharpe ratio of 0.54, a maximum 

historical drawdown of 45 percent and an average daily drawdown of 8 percent.  In comparison, 

Table 6 shows the investment performance using the base-case approaches with various dual-

momentum parameters.  As shown, none of the strategies under the classic approach produce 

investment results as attractive as the logistic regression algorithm from a risk-return point of view.  

Figure 17 displays the evolution of several key performance metrics over time for the 

logistic regression long-only approach.  The growth of the strategy is compared to the growth of 

SPX on which are superimposed in red the time periods when the strategy is in cash.  The 

comparisons of volatility and daily drawdowns between the strategy and SPX confirm that the 

algorithm seems able to fairly consistently reduce volatility and ongoing losses in vastly different 

market environments. 

The trading frequency chart is a visual indicator of when the strategy moves from its 

position on the lower horizontal axis (where it is in cash) to the top horizontal axis where it is 

invested.  Moving from cash to investment is shown as a green vertical bar, while moving from 

the investment to cash is shown in red.  The turnover of the strategy is an easier metric to visualize 

and is shown annualized at each date in the record.  A roundtrip from being invested to cash and 

back to an invested position generates a turnover of 2, since there is only one security in the 

portfolio and the decision is to be 100 percent in cash or in the asset.  Therefore, the high average 
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annual turnover (19.8) of the strategy is not to be viewed as a barrier to implementing practical 

client portfolios but rather as a by-product of how the approach to investing in one asset was 

designed for the purpose of this research. 

Figure 18 focuses on the performance of the logistic regression long-only strategy in the 

worst performance periods of SPX.  Figure 18-a displays results in the nine periods between 

August 3, 1964 and December 12, 2018 when SPX lost 15 percent or more.  The start and end 

dates identify the period when the respective SPX drawdown started and ended, so that the 

performance of SPX across that period is zero by construction and the maximum drawdown 

reached within the period is greater than the 15 percent threshold.  Figure 18-b shows a similar 

analysis in cases where SPX reaches at least a 25 percent drawdown. 

In the majority of these extreme performance environments, logistic regression was able to 

generate positive returns ranging between +4 percent and +48 percent.  In the periods when the 

algorithm experienced a loss, the maximum drawdown was similar to that of SPX (see Figure 19), 

and losses were confined to single digit percentage points.  This suggests that the logistic 

regression strategy is able to consistently deliver higher returns with maximum downside risk that 

is generally lower than that of SPX, and with average daily drawdowns that can be significantly 

lower than the buy-and-hold strategy.  It is able to do so over long periods of time, so that 

improvements are not concentrated in one or a few test sets. 

Table 7 compares the performance of the strategy to SPX over the period corresponding to 

each test set.  The results show that the algorithm perform better than SPX across all test sets 

except the fifth one from July 1997 to April 2005.  Over time the strategy is able to deliver excess 

performance by managing risk in periods of heavy losses for the index.  For instance, while the 

algorithm was underperforming the index from July 1997 to mid-2008, it recovered above the 
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index when strong downside volatility continued to drag the equity markets down from September 

to October 2008.  It is worth bearing in mind that the logistic regression strategy cannot 

overperform SPX other than by reducing risk, i.e. by being in cash in periods of prolonged 

downturns, since it only invests in SPX or cash.  The over-performance displayed in various test 

sets is a demonstration of risk control, borne out of the algorithm’s ability to repeatedly predict 

short-term performance with enough accuracy to capture upside while controlling losses one day 

at a time. 

Figure 20 compares the growth of the strategy to that of SPX over each test set, rescaling 

the price data to 1,000 on the first date of each test set.  Figure 21 compares the daily drawdowns 

over test sets assuming that both our strategy and SPX start at a new highwater mark on the first 

day of each test.  This allows a comparison of the evolution of losses and recoveries after each 

retraining of the strategy.  Finally, annualized volatility over each test set is shown in Figure 22.  

Across all test sets, the logistic regression long-only algorithm has resulted in lower 

volatility as well as average daily drawdowns generally far below SPX, with the largest reduction 

in losses of 59% in the second test set.  

 

6. Additional Analysis 

In this section, we address three additional topics: (1) Long-short investing applied to the 

S&P 500 Index, (2) the applicability of our approach to indices other than SPX, and (3) the impact 

of the retraining frequency on the performance of the trading strategy.   

6.1 Long-Short Investing 

Our discussion up to this point has centered on long-only investments where the portfolio 

is moved 100 percent to cash if profitability predictions fall below the target minimum threshold. 
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In the long-short approach by contrast, the portfolio is moved 100 percent to a short SPX position 

instead of cash. Borrowing costs are neglected, and since our SPX data excludes dividend 

reinvestments no adjustment to our price data is necessary for this approach. 

Table 8 compares the investment results of SPX to those of long only and long-short 

strategies using both a classic dual-momentum approach and our logistic regression algorithm. The 

classic approach is computed with a 21-day rebalancing frequency and 252-day look-back window 

to compute momentum. 

Results of the classic dual-momentum strategy are far worse when using a long-short 

approach than with a long-only approach. This is due to the year-long look-back period the strategy 

uses to assess whether momentum exceeds the target threshold. When the strategy is short the 

index, it will lose accumulated profits over a potentially long period of time once the index starts 

trending up following its point of maximum drawdown. On average, the long-short approach loses 

more in this fashion than it makes being short while the index moves down, resulting in lower 

returns (4.1% versus 4.9% for the long-only approach) and worse risk metrics across the board. 

For instance, the average daily drawdown of the long-short approach is -25 percent versus -7 

percent for the long-only approach. Both the long-only and long-short approaches for the classic 

dual-momentum strategy yield worst risk-return results than the simple buy-and-hold approach. 

By contrast, both long-only and long-short logistic regression strategies yield higher 

returns at significantly lower risk than SPX. With a 10.0 percent annualized return, the long-short 

approach is also more profitable than the long-only approach with an 8.6 percent return. The long-

short strategy’s risk metrics – maximum drawdowns, average daily drawdowns and volatility – are 

10 percent to 20 percent worse than those of the long-only strategy, but that increase in risk is 

broadly offset by the higher return so that the Sharpe ratio of both approaches is materially identical 
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at 0.55. We have run a number of comparisons between long-short and long-only approaches to 

investing into SPX with logistic regression, varying the minimum profitability threshold, the target 

time horizon and retraining frequencies. In the quasi-totality of cases, we found results 

qualitatively the same as those described above. The long-short approach yields higher returns that 

the long-only approach, albeit with somewhat worse risk metrics and similar Sharpe ratios.  

 

6.2 Applying the Strategy to Other Equity Indices 

So far, our tests have been focusing on a single equity index – the S&P 500 Index.  

Although care was taken not to overfit the data, some decisions were made based on the analysis 

of the price data of that index, for instance the selection of third-order polynomials, the three-day 

time horizon that drives the prediction of future performance, as well as the magnitude of the 

regularization parameter.  Moreover, features themselves were selected from experience to reflect 

typical financial metrics used by momentum-based trading models applied to large capitalization 

equities, and it is possible that the authors’ experience could itself be biased towards SPX which 

is one of the most studied and important indices in global finance.  Large capitalizations have their 

own market dynamics driven by usually deeper equity research coverage than mid or small 

capitalizations, as well as a broader range of tracking indices and investable funds such as 

exchange traded funds, mutual funds, unit investment trusts, and UCITS.  Additionally, U.S. equity 

markets are historically the largest and most liquid.  Consequently, the algorithm developed above 

for a U.S. equity index may not perform well when applied to non-U.S. markets, different assets 

classes or stocks of different market capitalization.   

To check the broader applicability of our algorithm beyond SPX, we apply it to the other 

indices listed in Table 1.  Table 9 summarizes the resulting key performance metrics when 
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investing in these indices using the same long-only logistic regression algorithm that was used for 

SPX.   

Figure 23 to Figure 25 display in percentage terms the excess performance over a buy-and-

hold investment into SPX of the logistic regression algorithm.  Figure 23 shows that when applied 

to the U.S. mid-capitalization index, the approach adds no significant value.  Returns are about 3 

percent higher and the Sharpe ratio is 9 percent better than the buy-and-hold index, but the 

volatility, average and maximum drawdowns do not improve materially.  These small 

improvements in returns are not sufficient in practice to offset considerations of model risk, 

slippage, trading costs and management fees.  Therefore, the algorithm does not appear to be 

practically applicable as-is to mid-capitalization equities.  

The algorithm applied to U.S. small capitalizations results in a degradation in return on the 

order of 35 percent, and a modest decrease in investment risk.  This is consistent with the 

expectation that the market drivers of small capitalization stocks are different than those of larger 

stocks.  

We next apply the algorithm to three non-U.S. equity indices: the FTSE 100 Index, the 

Tokyo Stock Exchange Price Index (TPX) and the FTSEurofirst 300 Index (E300).  While the 

average capitalization of the stocks in these indices is typically smaller than SPX, the underlying 

securities are large capitalizations in their home markets.  Thus, we expect that some aspects of 

investor behavior that drive the supply and demand for these stocks are similar to those driving 

SPX.  Results for these market indices show improvements in return and risk metrics far larger 

than for SPX, although in aggregate the SPX strategy is the most appealing one from the point of 

view of risk-adjusted return as well as the absolute level of returns that it generates.  Results for 

these three non-U.S. equity indices are shown in Figure 24. 
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The FTSE 100 Index (UKX) showed improvements across all key performance metrics, in 

particular an 87 percent increase in annual return over the period of December 19, 1997 to 

December 12, 2018, accompanied by a reduction in average daily drawdowns from -16.3 percent 

to -11.8 percent.  The Sharpe ratio of the algorithm rose over 310 percent from 0.03 to 0.11.  

The Tokyo Stock Exchange Price Index (TPX) similarly showed improvements across all 

key performance metrics over the period of May 16, 1977 to December 12, 2018.  Return increased 

149 percent from 3.54 percent to 8.81 percent, while average daily drawdowns were reduced from 

38 percent to 8 percent. 

Similar improvements were seen when investing in the largest 300 stocks in the FTSE 

Developed Europe Index (E300) from March 8, 1999 to December 12, 2018.  Returns rose 309 

percent from 0.58 percent to 2.37 percent, while average drawdowns fell 56 percent from 26 

percent to 11 percent. 

Figure 25 shows the results of the algorithm applied to two other large capitalization U.S. 

equity indices: the Dow Jones Industrial and the Dow Jones Transportation Average.  These 

indices were selected because of the length of the available price history which goes back to the 

1920’s as shown in Table 1.   

The Dow Jones Industrial Average is the unique case in this analysis where the algorithm 

modestly reduces returns but proportionately reduces risk even further, resulting in a trading 

strategy with a more attractive risk profile albeit with lower return.  The loss of profitability, from 

6.4 percent to 6.1 percent annualized, may seem small but would translate into a large monetary 

differential when compounded 60 years from October 26, 1959 to December 12, 2018.  On the 

other hand, the reduction in maximum drawdowns from 54 percent to 37 percent, and in average 
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daily drawdowns from 10 percent to 6 percent are material enough that within the context of a 

multi-security portfolio, the algorithm could be expected to perform without changes. 

The Dow Jones Transportation Average in contrast shows improvements more closely 

aligned with those of SPX: a 14 percent increase in return with a 44 percent reduction in average 

daily drawdowns and a 31 percent drop in the maximum drawdown between October 26, 1959 and 

December 12, 2018. 

In sum, it seems that our logistic regression algorithm can perform adequately when 

applied to other equity indices that fall in the same asset class as SPX, namely large capitalization 

stocks. 

6.3 Impact of the Retraining Frequency on the Performance of the Strategy 

While the trading strategy discussed in this study was designed to learn autonomously 

when it becomes necessary to retrain the weights of the features, we also examined the 

performance of the strategy in cases where the retraining frequency is fixed and specified a priori 

instead of learnt.  Figure 26 displays the performance of the strategy when the weights of the 

features are retrained at fixed frequencies ranging from 250 business days (i.e., about one calendar 

year) to 3,000 business days (i.e., about 12 years).   

It is interesting to note that while pre-determined training frequencies of up to 2,000 days, 

or 8 years, can add significant value over a buy-and-hold SPX strategy in the form of added returns 

or significantly lower risk or both, letting the algorithm learn when to retrain itself yields better 

investment performance than any of the fixed retraining frequency approaches. 

In our algorithm, the retraining decision is triggered by the convergence of the test set cost 

function as the strategy walks forward in time.  This convergence of the test set cost function to a 

value that is somewhat higher than, but close to, the corresponding training set cost, is what one 
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expects of an algorithm that does not overfit data.  An optimal trigger to force the retraining of 

model parameters would be an indicator that the weights calculated on the training set that ended 

several years in the past are no longer effective in predicting ongoing performance.  

Notwithstanding the success of the approach analyzed in this paper, whether the convergence of 

the cost function on a given test set can serve as a reasonable proxy for such an indicator requires 

additional research beyond the scope of this paper. 

 

7. Conclusion and Future Research 

In this study, we propose a machine learnings approach to build momentum-based trading 

strategies.  Specifically, we design a logistic regression algorithm which takes as inputs momenta 

and drawdowns over various historical time periods, and tries to predict whether price will rise 

over a fixed threshold in the near future.  The approach is kept as simple as possible by excluding 

all non-price economic or market data that could be also relevant in predicting market prices.  In 

doing so, we constrained the machine learning approach to optimizing a price auto-correlation 

problem on a portfolio containing one security only. 

We found that, when applied to SPX, the optimal value of the prediction time horizon is 

three business days, although using a time horizon of up to 10 days could add value either by 

increasing returns, decreasing risk or both.  We also found that well performing investment 

strategies can be created with a range of non-linear features, whether these are built from quadratic, 

cubic or higher-order polynomials.  

The algorithm yields a range of small to large improvements when applied to U.S. and 

international large capitalization indices.  The combination of purposely generic momentum 

features, an autonomously learnt retraining frequency, a regularization parameter of the same order 
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of magnitude as the model weights, and the use of cubic polynomial features to predict short-term 

future profitability, is able to capture the momentum effect in different geographies and across 

long periods covering different stock market regimes. 

There are multiple opportunities to build on the ideas presented in this paper.  First, while 

logistic regression offers a simple yet powerful framework within which to build machine learning 

investment strategies, there is no intuitive reason why an approach that uses polynomial 

combinations of features should be optimal.  Future research may explore the performance of other 

machine learning techniques such as Support Vector Machines and neural networks.   

Second, this study constrains the algorithm to features that are based solely on historical 

prices for simplicity, although there is no reason to believe this is the best approach.  In fact, there 

are many economic and market indicators that are intuitively likely to be meaningful when 

predicting security prices.  Future research may expand the set of features to include non-price 

data to try and improve the algorithm’s predictive power. 

Third, our strategy is designed as an investment into a single asset for clarity of presentation.  

Future research can extend to portfolios that invest in multiple securities across one or multiple 

asset classes. Moreover, there is scope to investigate the application of machine learning 

algorithms based on factors other than momentum, or that combine multiple factors, such as value, 

size or asset quality for instance, into one investment strategy.   
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FIGURE 1 

SPX Error Metrics for Different Training Set Sizes  

 

These figures show comparisons of SPX error metrics and the cost function among training, and two test sets using different training 

set sizes. 

    

    

  

 
 

  

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

Precision Recall F-Score Cost

Training Set Size: 30%

Training set Test set 2 Test set 1

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

Precision Recall F-Score Cost

Training Set Size: 35%

Training set Test set 2 Test set 1

 -

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

Precision Recall F-Score Cost

Training Set Size: 40%

Training set Test set 2 Test set 1

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

Precision Recall F-Score Cost

Training Set Size: 45%

Training set Test set 2 Test set 1

 -

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00

Precision Recall F-Score Cost

Training Set Size: 50%

Training set Test set 2 Test set 1
 -

 0.20

 0.40

 0.60

 0.80

 1.00

 1.20

30.0% 35.0% 40.0% 45.0% 50.0%

Size of Training Set

Precision Recall F-Score Cost

 Electronic copy available at: https://ssrn.com/abstract=3325656 



35 

 

FIGURE 2 

Learning the Best Retraining Frequencies Across Test Sets For SPX 

 

These figures depict the costs calculated with the test sets.  The x-axis represents the number of days in the test set.  The y-axis 

represents the cost calculated with the test set. 
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FIGURE 2 (Continued) 

Learning the Best Retraining Frequencies Across Test Sets For SPX 

 

These figures depict the costs calculated with the test sets.  The x-axis represents the number of days in the test set.  The y-axis 

represents the cost calculated with the test set. 
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FIGURE 3 

Impact of Polynomial Orders on the Excess Performance of Long-Only Logistic Regression Relative to SPX  

 

These figures depict the excess performance of long-only logistic regression with different degrees of polynomials, relative to 

buying and holding SPX.  The data is from August 3, 1964 to December 12, 2018. 
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FIGURE 4 

Impact of Investment Time Horizon on Investment Performance: Long-Only Logistic Regression with Cubic 

Polynomials  

 

These figures depict investment performance for long-only logistic regression with cubic polynomials with different time horizons.  

The data is from August 3, 1964 to December 12, 2018. 
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FIGURE 5 

Impact of Investment Time Horizons on Investment Performance: Long-Only Logistic Regression with 4th Order 

Polynomials  

 

These figures depict investment performance for long-only logistic regression applied to SPX with 4th order polynomials with 

different time horizons.  The data is from August 3, 1964 to December 12, 2018. 
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FIGURE 6 

Improvement Over SPX Using Cubic Polynomials – 3-Day Investment Horizon  

 

These figures depict the improvement in investment performance of cubic polynomials over SPX with a three-day investment 

horizon and long-only approach.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 7 

Relative Importance of Features within Each Training Set 

 

This figure depicts relative scaling of θ elements or feature weights, across the seven training sets. 
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FIGURE 8 

Range of All Feature Weights within Each Training Set 

 

This figure depicts the range of all feature weights within each of the seven training sets. 
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FIGURE 9 

Weight Range of Each Feature across All Training Sets 

 

This figure depicts the weight range of each feature across all seven training sets. 
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FIGURE 10 

Ten Most/Least Important Features across Training Sets 

 

These figures depict the ten most and ten least important features across the seven training sets. 
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FIGURE 11 

Feature Weights Calculated in Training Set #1 

 

These figures describe the feature weights calculated in the first training set. 

Figure 11-a: Weight Values Figure 11-b: Weight Z-Scores  

  

Figure 11-c: Weight Distribution  Figure 11-d: Weight Absolute Values 
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FIGURE 12 

Feature Weights Calculated by Training Sets 

 

These figures depict the SPX feature weights calculated by each training set. 
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FIGURE 12 (Continued) 

Feature Weights Calculated by Training Sets 

 

These figures depict the feature weights calculated by training sets. 
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FIGURE 13 

The Relationship between 30-Day and 120-Day Historical Momenta and Future Performance in Training Set #1 

 

These figures depict the scatter of future performance relative to 30-day and 120-day momenta in training set 1.  Scatter is plotted 

green when future performance Y is above the target threshold δ.  Scatter is plotted red when future performance Y is below the 

target threshold δ.  Data is from December 30, 1927 to June 30, 1964.   

Y = 1 (Green) Plotted Last  Y = 0 (Red) Plotted Last 
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FIGURE 14 

Sample SPX 3-Day Future Performance versus Linear Features in Training Set #7 

 

These figures depict the scatter of future SPX 3-day performance relative to linear features in training set 7.  Scatter is plotted green 

when future performance Y is above the target threshold δ.  Scatter is plotted red when future performance Y is below the target 

threshold δ.  
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FIGURE 15 

Sample SPX 3-Day Future Performance versus Quadratic Features in Training Set #7 

 

These figures depict the scatter of future SPX 3-day performance relative to quadratic features in training set 7.  Scatter is plotted 

green when future performance Y is above the target threshold δ.  Scatter is plotted red when future performance Y is below the 

target threshold δ.  
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FIGURE 15 (Continued) 

Sample SPX 3-Day Future Performance versus Quadratic Features in Training Set #7 

 

These figures depict the scatter of future SPX 3-day performance relative to quadratic features in training set 7.  Scatter is plotted 

green when future performance Y is above the target threshold δ.  Scatter is plotted red when future performance Y is below the 

target threshold δ.  
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FIGURE 16 

Sample SPX 3-Day Future Performance versus Cubic Features in Training Set #7 

 

These figures depict the scatter of future SPX 3-day performance relative to cubic features in training set 7.  Scatter is plotted green 

when future performance Y is above the target threshold δ.  Scatter is plotted red when future performance Y is below the target 

threshold δ.  
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FIGURE 16 (Continued) 

Sample SPX 3-Day Future Performance versus Cubic Features in Training Set #7 

 

These figures depict the scatter of future SPX 3-day performance relative to cubic features in training set 7.  Scatter is plotted green 

when future performance Y is above the target threshold δ.  Scatter is plotted red when future performance Y is below the target 

threshold δ.  
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FIGURE 17 

SPX Long-Only Logistic Regression Performance 

 

These figures depict the performance of the logistic regression long-only strategy.  Data is from August 3, 1964 to December 12, 

2018. 
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FIGURE 17 (Continued) 

Long-Only Logistic Regression Performance 

 

These figures depict the performance of the logistic regression long-only strategy.  Data is from August 3, 1964 to December 12, 

2018. 
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FIGURE 17 (Continued) 

SPX Long-Only Logistic Regression Performance 

 

These figures depict the performance of the logistic regression long-only strategy.  Data is from August 3, 1964 to December 12, 

2018. 
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FIGURE 18 

Long-Only Logistic Regression Performance in Periods of 15% and 25% SPX Drawdowns  

 

These figures depict the performance of the long-only logistic regression in periods of 15% and 25% SPX drawdowns.   

Figure 18-a: Logistic Regression Performance in Periods of 15% SPX Drawdown 

 

Figure 18-b: Logistic Regression Performance in Periods of 25% SPX Drawdown 
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FIGURE 19 

Drawdowns of SPX and Long-Only Logistic Regression in Periods When SPX Reaches 15% and 25% Drawdown  

 

These figures depict the drawdowns of SPX and long-only logistic regression in periods when SPX reaches 15% and 25% SPX 

drawdowns.   

Figure 19-a: Drawdowns of SPX and Logistic Regression in Periods When SPX Reaches A 15% Drawdown 

 

Figure 19-b: Drawdowns of SPX and Logistic Regression in Periods When SPX Reaches A 25% Drawdown 
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FIGURE 20 

Long-Only Logistic Regression and SPX Returns by Test Set  

 

These figures compare the returns of long-only logistic regression and buy-and-hold SPX by test sets.  Logistic regression is 

depicted in Blue, and SPX is depicted in Red.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 20 (Continued) 

Long-Only Logistic Regression and SPX Returns by Test Set  

 

These figures compare the returns of long-only logistic regression and buy-and-hold SPX by test sets.  Logistic regression is 

depicted in Blue, and SPX is depicted in Red.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 21 

Long-Only Logistic Regression and SPX Drawdowns by Test Set 

 

These figures compare the drawdowns of long-only logistic regression and buy-and-hold SPX by test sets.  Logistic regression is 

depicted in Blue, and SPX is depicted in Red.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 21 (Continued) 

Long-Only Logistic Regression and SPX Drawdowns by Test Set 

 

These figures compare the drawdowns of long-only logistic regression and buy-and-hold SPX by test sets.  Logistic regression is 

depicted in Blue, and SPX is depicted in Red.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 22 

Long-Only Logistic Regression and SPX Annualized Volatility by Test Set  

 

These figures compare the annualized volatility of long-only logistic regression and buy-and-hold SPX by test sets.  Logistic 

regression is depicted in Blue, and SPX is depicted in Red.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 22 (Continued) 

Long-Only Logistic Regression and SPX Annualized Volatility by Test Set  

 

These figures compare the annualized volatility of long-only logistic regression and buy-and-hold SPX by test sets.  Logistic 

regression is depicted in Blue, and SPX is depicted in Red.  Data is from August 3, 1964 to December 12, 2018. 
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FIGURE 23 

Relative Performance of Long-Only Logistic Regression Applied to Small and Mid-Cap U.S. Indices 

 

These figures depict the relative excess performance of long-only logistic regression when applied to small and mid-cap U.S. 

indices. 
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FIGURE 24 

Relative Performance of Long-Only Logistic Regression Applied to Non-U.S. Equity Indices 

 

These figures depict the relative excess performance of long-only logistic regression when applied to non-U.S. equity indices. 
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FIGURE 25 

Relative Performance of Logistic Regression Applied to Other Large-Cap U.S. Equity Indices 

 

These figures depict the relative excess performance of long-only logistic regression when applied to other large-cap U.S. equity 

indices. 
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FIGURE 26 

Impact of Retraining Frequency on the Performance of Logistical Regression Applied to SPX  

 

These figures depict the impact of the retraining frequency on the performance of the SPX long-only strategy.  The x-axis represents 

the number of days in the fixed retaining intervals.  The y-axis represents different performance metrics.  Data is from August 3, 

1964 to December 12, 2018. 
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TABLE 1 

Sample Selection 

 

This table summarizes the eight equity indices used in the study.   

Name Symbol Start Date End Date Source 

S&P 500 Index SPX December 30, 1927  

 

 

 

December 12, 2018 

 

 

 

 

Bloomberg 

S&P Small Cap 600 Index SML December 31, 1993 

S&P Mid Cap 400 Index MID December 31, 1990 

FTSE 100 Index UKX December 19, 1997 

FTSEurofirst 300 Index E300 December 31, 1985 

Tokyo Stock Exchange Price Index TPX December 19, 1997 

Dow Jones Industrial Average INDU January 2, 1920 

Dow Jones Transportation Average TRAN January 2, 1920 
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TABLE 2 

Definition of Performance Indicators  

 

This table summarizes variable definitions.   

Variables Descriptions 

Annual Return Annual return is calculated as the ratio of the asset prices at the start and end of the time 

period under consideration. 

Sharpe Ratio Sharpe ratio is calculated as the average return minus the risk-free rate divided by the 

standard deviation of return on an investment. 

Sortino Ratio The Sortino ratio, a variation of the Sharpe ratio, differentiates harmful volatility from 

volatility in general by using a value for downside deviation. The Sortino ratio is the 

excess return over the risk-free rate divided by the downside semi-variance, and so it 

measures the return to "bad" volatility. (Volatility caused by negative returns is considered 

bad or undesirable by an investor, while volatility caused by positive returns is good or 

acceptable.) In this way, the Sortino ratio can help an investor assess risk in a better 

manner than simply looking at excess returns to total volatility, as such a measure does not 

consider how often returns are positive as opposed to how often they're negative. 

Volatility Volatility is calculated as the standard deviation of daily returns over a given period of 

time. 

Maximum Drawdown Maximum drawdown is calculated as the maximum value over a specified time interval 

of daily drawdowns, while the drawdown on a given day is the percentage difference 

between that day’s asset value and the highest value of the asset prior to that day. 

Average Daily Drawdown Average daily drawdown is calculated as the average value over a specified time interval 

of daily drawdowns.  

Precision Precision is calculated as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 , 

while true positives are days which we predict to have positive performance and turn out 

to also have positive performance, and false positives are days which we predict to have 

positive performance and turn out to have negative performance  

Recall Recall is calculated as follows: 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 , 

while false negatives are days which we predict to have negative performance and turn 

out to have positive performance 

F Score F score is calculated as follows: 𝐹 𝑆𝑐𝑜𝑟𝑒 = 2 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙
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TABLE 3 

Index Performance Summary 

 

This table summarizes the key performance indicators of our sample indices over the entire sample period. 

 Annual 

Return 

Sharpe 

Ratio 

Volatility Maximum 

Drawdown 

Average Daily 

Drawdown 

S&P 500 Index (SPX) 5.7% 0.25 19% -86% -22% 

S&P Small Cap 600 Index (SML) 9.2% 0.40 21% -59% -9% 

S&P Mid Cap 400 Index (MID) 10.8% 0.52 19% -56% -7% 

FTSE 100 Index (UKX)  5.7% 0.27 17% -53% -13% 

FTSEurofirst 300 Index (E300) 4.7% 0.21 18% -61% -19% 

Tokyo Stock Exchange Price Index (TPX) 6.4% 0.31 17% -76% -29% 

Dow Jones Industrial Average (INDU) 5.6% 0.26 18% -89% -21% 

Dow Jones Transportation Average (TRAN) 5.0% 0.19 22% -93% -29% 
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TABLE 4 

Learning SPX Best Retraining Time Windows – Error Metrics Across Data Sets 

 

This table summarizes the error metrics across our seven training sets and seven test sets. 

 Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5 Training Set 6 Training Set 7 

Start date 12/30/1927 09/10/1936 02/02/1945 07/07/1953 02/15/1961 12/24/1968 05/20/1977 

End date 6/30/1964 03/21/1973 07/15/1981 11/02/1989 06/04/1997 03/08/2005 08/09/2013 

Training sets:   

Cost (𝐽(𝜃)) 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

Precision 0.57 0.57 0.56 0.57 0.56 0.55 0.56 

Recall 0.83 0.80 0.80 0.80 0.83 0.76 0.82 

F-Score 0.68 0.66 0.66 0.66 0.67 0.64 0.67 

Test sets:   

Cost (𝐽(𝜃)) 0.71 0.71 0.70 0.70 0.71 0.71 0.7 

Precision 0.53 0.52 0.55 0.56 0.52 0.55 0.58 

Recall 0.84 0.68 0.74 0.78 0.70 0.84 0.91 

F-Score 0.65 0.59 0.64 0.65 0.60 0.66 0.71 
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TABLE 5 

Investment Performance: SPX Versus Long-Only Logistic Regression 

 

This table reports the investment performance of SPX versus long-only logistic regression.  Data from August 3, 1964 to December 

12, 2018. 

 Annual 

return 

Sharpe 

Ratio 

Volatility Maximum 

drawdown 

Average daily 

drawdown 

SPX 6.58% 0.35 16% -57% -11.2% 

Logistic Regression with Initial 

Features only (Linear algorithm) 

6.5% 0.36 15% -50% -9.8% 

Logistic Regression with Quadratic 

Polynomials 

6.1% 0.37 15% -50% -9.8% 

Logistic Regression with Cubic 

Polynomials 

8.6% 0.54 14% -45% -7.8% 

Logistic Regression with 4th Order 

Polynomials 

7.2% 0.45 14% -44% -7.9% 
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TABLE 6 

SPX Investment Performance: Classic Approach Time-series Dual-Momentum Long-Only Strategy 

 

This table reports the investment performance of a classic time-series dual-momentum long-only strategy with various driving 

parameters.  Data is from August 3, 1964 to December 12, 2018. 

 Rebalancing 

Frequency 

(days) 

Momentum 

Lag (days) 

Minimum 

Profitability 

Threshold 

Annual 

Return 

Sharpe 

Ratio 

Volatility Maximum 

Drawdown 

Average 

Daily 

Drawdown 

 

Case 1 21 252 1% 5.52% 0.38  12% -33.2% -7.4% 

 

Case 2 

 

21 252 0% 6.03% 0.41  12% -33.5% -7.1% 

 

Case 3 

 

21 252 5% 4.87% 0.34  11% -33.2% -7.4% 

 

Case 4 

 

21 189 0% 5.59% 0.38  12% -33.2% -7.6% 

 

Case 5 

 

21 189 1% 5.35% 0.37  12% -33.2% -8.0% 

 

Case 6 

 

21 189 5% 4.85% 0.34 11% -33.2% -8.5% 

 

Case 7 

 

1 252 5% 4.82% 0.31 12% -51.2% -12.1% 

 

Case 8 

 

1 252 0% 5.87% 0.37 13.0% -52.2% -11.6% 

 

 

  

 Electronic copy available at: https://ssrn.com/abstract=3325656 



75 

 

TABLE 7 

Investment Performance: SPX Versus Long-Only Logistic Regression, by Test Sets 

 

This table reports the investment performance of SPX versus long-only logistic regressions by test sets.  Returns are cumulated 

over the entire test set period.  Data is from August 3, 1964 to December 12, 2018. 

 Return (not 

annualized) 

Sharpe Ratio Volatility Maximum 

Drawdown 

Average Daily 

Drawdown 

Test Set #1 (Aug 3, 1964 – Apr 23, 1973) 

SPX 43.9% 0.34 10.1% -36.1% -7.5% 

Logistic Regression 102 .1% 0.98 7.9% -22.6% -4.7% 

Change +133% +189% -22% -37% -37% 

Test Set #2 (Apr 24, 1973 – Aug 14, 1981) 

SPX 20.5% 0.09 14.6% -44.1% -12.3% 

Logistic Regression 65% 0.43 12.1% -36.3% -6.4% 

Change +218% +398% -17% -18% -48% 

Test Set #3 (Aug 17, 1981 – Dec 5, 1989) 

SPX 166.4% 0.65 17.6% -33.5% -7.5% 

Logistic Regression 200.3% 0.86 15.4% -31.5% -5% 

Change +20% +31% -13% -6% -17% 

Test Set #4 (Dec 6, 1989 – Jul 7, 1997) 

SPX 161.7% 1.06 11.8% -19.9% -3% 

Logistic Regression 163.4% 1.25 10.1% -9.3% -2.5% 

Change +1% +18% -14% -8% 0% 

Test Set #5 (Jul 8, 1997 – Apr 8, 2005) 

SPX 28.6% 0.12 19.7% -49.1% -18% 

Logistic Regression 25.2% 0.11 16.9% -45.4% -18% 

Change -12% -1% -14% -8% 0% 

Test Set #6 (Apr 11, 2005 – Sept 11, 2013) 

SPX 43% 0.15 21.8% -56.8% -15% 

Logistic Regression 72.5% 0.29 19.6% -40.7% -5.5% 

Change +69% +90% -10% -28% -64% 

Test Set #7 (Sept 12, 2013 – Dec 12, 2018) 

SPX 57.5% 0.63 12.8% -14.2% -2.3% 

Logistic Regression 76.9% 0.92 11.4% -10.2% -1.6% 

Change +34% +45% -10% -28% -32% 
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TABLE 8 

Long-Only and Long-Short Investment Performance: Classic Time Series Dual Momentum and Logistic Regression 

Applied To SPX 

 

This table compares the investment performance of long-only and long-short strategies applied to SPX: Classic time series dual-

momentum and logistic regression.  Data from August 3, 1964 to December 12, 2018. 

 Annual 

return 

Sharpe 

Ratio 

Volatility Maximum 

drawdown 

Average daily 

drawdown 

SPX  6.58% 0.35 16% -57% -11.2% 

Classic Dual-Momentum / Long 

Only 

4.87% 

 

0.34  

 

11% 

 

-33% 

 

-7.4% 

 

Classic Dual-Momentum / Long-

Short 

4.07% 0.17 19% -76% -25.4% 

Cubic Logistic Regression / Long 

Only 

8.6% 0.54 14% -45% -7.8% 

Cubic Logistic Regression / Long-

Short 

10.0% 0.55 16% -51% -10.2% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Electronic copy available at: https://ssrn.com/abstract=3325656 



77 

 

 

 

 

TABLE 9 

Logistic Regression Long-Only Algorithm Applied to Other Equity Indices 

 

This table reports the investment performance of the logistic regression long-only algorithm when applied to other equity indices.   

 Annual return Sharpe Ratio Volatility Maximum 

drawdown 

Average daily 

drawdown 

SPX 6.58% 0.35 16.1% -56.8% -11.2% 

Logistic Regression  8.60% 0.54 14% -45% -7.8% 

 

SML (small caps) 8.43% 0.33 22.5% -59% -9% 

Logistic Regression 5.37% 0.21 20.5% -54% -8% 

 

MID (mid caps) 7.46% 0.31 20.6% -56% -8% 

Logistic Regression 7.65% 0.34 19.4% -56% -8% 

 

UKX (non U.S.) 1.51% 0.03 18.7% -53% -16% 

Logistic Regression 2.83% 0.11 16.2% -47% -12% 

 

TPX (non U.S.) 3.54% 0.13 18.8% -76% -38% 

Logistic Regression 8.81% 0.55 14.2% -39% -8% 

 

INDU 6.36% 0.34 15.7% -54% -10% 

Logistic Regression 6.09% 0.39 13.2% -37% -6% 

 

TRAN 7.25% 0.32 19.4% -61% -15% 

Logistic Regression 8.26% 0.49 14.8% -42% -9% 

 

E300 (non U.S.) 0.58% -0.02 19.4% -61% -26% 

Logistic Regression 2.37% 0.09 15.4% -39% -11% 
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