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Introductory Thoughts 

Machine learning (ML) in finance can take on an (1) academic, (2) front office, (3) and a back-office 
form. The techniques used in the front and back office falls within financial industry machine learning1. 
This paper will look at techniques from both an academic2 and industry machine learning perspective. 
Quantitative finance offers a wealth of opportunities to learn more about applied and research-driven 
data science (DS). For finance problems, the goal is easy, but the solution is hard. You have vast 
quarries of data available that can readily be applied using the most recent ML development. Pick your 
favourite ML/DS acronym; I can assure you there is a place for it in finance. This paper is not meant to 
be read line by line, it’s a ctr+f type of affair, let your eyes guide you and follow the blue links for gold. 
This paper will always remain in draft form and is an informal collection of a few thoughts for machine 
learning applications in asset management3.  

In most fields, we see a mismatch between industry and academia. That is not the case for machine 
learning. By nature of its short development cycle, academia and industry closely cooperate frequently 
and hire out of the same talent pool; this is not just the case in finance but in all applied machine 
learning fields.  Academic finance seems to be applying machine learning differently depending on 
whether they are in the mathematical finance and traditional finance camp. Within these groups, 
there is a second division along the lines of predictability and interpretability; the result of regulatory 
requirements. Financial machine learning is divided into groups that work on the interpretability (b-
hatters) and explainability of their models (y-hatters). The b-hatters focus on developing models that 
would please causal theorists and regulators and the y-hatters side with prediction science and hedge-
funds. 

B-hatters generally sides with traditional finance and y-hatting with financial mathematics and 
engineering. This might turn out to be a false dichotomy; in my own research, I have found both to be 
extremely important for hypothesis and prediction tasks. In this paper, I am looking at the applications 
of machine learning in asset management, being one of many financial services.  Financial services can 
broadly be divided into, corporate and retail banking, investment banking, insurance services, 
payment services, investment services, financial management, and other advisory services. In this, 
paper the focus in on investment services. This paper will pay specific attention to asset management 
and brokerage services as opposed to wealth management, private equity and venture capital 
management, not to say that they will not benefit from the same machine learning developments. 
This paper is conducted in Python; if you do not know Python or machine learning have a quick run 
through this introduction.  

Historically algorithmic trading used to be more narrowly defined as the automation of sell-side trade 
execution, but since the introduction of more capable algorithms the definition have grown to include 
idea generation, alpha factor design, asset allocation, position sizing, and the testing of strategies. 
Machine learning, from the vantage of a decision-making tool, can help in all of these areas.  Firms 
hiring quants as faced with an explore-exploit dilemma when weighing up candidates. As it stands the 
hiring criteria at most firms are highly in favour of exploit driven abilities, which is unfortunate, 
because the future of great strategies lies in financial ‘hackers’. In industry we see time and time again 
how applied machine learning enthusiast outperform and outthink machine learning PhDs. We have 

 
1 This paper applies machine learning models from an applied industry finance side as opposed to a business 
automation side i.e. financial machine learning (FinML) as opposed to business machine learning (BML). 
2 The front office does and will keep on benefiting from both traditional and mathematical academic finance 
research. Academic research generally require some additional steps to make the research it ‘practical’. Both 
the front and back office also benefits from advances in business machine learning, which is a subsection of AI 
unrelated to the specific industry but essential for the general automation of work and administrative 
processes and decision-making. 
3 For a more formal write-up see part one and part two on the JFDS.  
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entered a period of experimentation due to fast computation feedback. We need thinkers in the true 
original sense of the word.  

Asset Management 

Asset management can be broken into the following tasks: (1) portfolio construction, (2) risk 
management, (3) capital management, (4) infrastructure and deployment, and (5) sales and 
marketing. This article focuses on portfolio construction using machine learning. Financial machine 
learning research can loosely be divided into four streams. The first concerns asset price prediction 
where researchers attempt to predict the future value of securities using a machine learning 
methodology. The second stream involves the prediction of hard or soft financial events like earnings 
surprises, regime changes, corporate defaults, and mergers and acquisitions. The third stream entails 
the prediction and/or estimation of values that are not directly related to the price of a security, such 
as future revenue, volatility, firm valuation, credit ratings and factor quantiles. The fourth and last 
stream comprises the use of machine learning techniques to solve traditional optimization and 
simulation problems in finance like optimal execution, position sizing, and portfolio optimization.   

The first three streams are concerned with the creation of trading strategies, while the last stream is 
concerned with everything else, like weight optimization, optimal execution, risk management, and 
capital management. Within these streams we can make use various machine learning techniques. 
These techniques can be broken into the following: (1) processing of unstructured data, (2) supervised 
learning, (3) validation techniques, (4) unsupervised learning, and (5) reinforcement learning. Every 
machine learning solution is constructed out of a mixture of the above. In this series, I would look at 
the application of the above-mentioned technologies in asset management. Each one of finance’s 
subsectors and services will benefit from AI, be it industry or administrative AI. To prove it I will at 
some point in the future include a few working examples for each of the seven sectors of finance. 

 

1. Portfolio Optimisation: 

• Trading Strategies 

• Weight Optimisation 

• Optimal Execution 
2. Risk Measurement: 

• Extreme Risk 

• Simulation 
3. Capital Management 

• e.g. Kelly Criterion 
4. Infrastructure and Deployment 

• Cloud 

• Diagnostics 

• Monitoring and Testing 
5. Sales and Marketing 

• Product Recommendation 

• Customer Service 
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Portfolio Construction 

Trading Strategies 
 
1. Tiny CTA 

Resources: 
See this paper and blog for further 
explanation.  
Data, Code 

2. Tiny RL 
Resources: 
See this paper and/or blog for 
further explanation.  
Data, Code  

3. Tiny VIX CMF 
Resources: 
Data, Code 

4. Quantamental  
Resources: 
Web-scrapers, Data, Code, 
Interactive Report.  

5. Earnings Surprise 
Resources: 
Code 

6. Bankruptcy Prediction 
Resources: 
Data, Code, SSRN 

7. Filing Outcomes 
Resources: 
Data 

8. Credit Rating Arbitrage 
Resources: 
Code 

9. Factor Investing: 
Resources: 
Paper, Code, Data  

10. Systematic Global Macro 
Resources: 
Data, Code 

11. Mixture Models 
Resources: 
Data, Code 

12. Evolutionary 
Resources: 
Code 
 

13. Agent Strategy 
Resources: 
Code 

 
14. Stacked Trading 

Resources: 
Code, Blog 

15. Deep Trading 
Resources:Code 

 
Weight Optimisation 
 
1. Online Portfolio Selection (OLPS) 

Resources: 
Code 

2. HRP 
Resources: 
Data, Code 

3. Deep 
Resources: 
Data, Code, Paper 

4. Linear Regression 
Resources: 
Code, Paper 

5. PCA and Hierarchical  
Resource: 
Code 

5. Network Graph: 
Resource: 

      Code 
5. Bayesian Sentiment  

Resource: 
             Code 

5. Reinforcement Learning  
Resource: 

             Code 
 

 
All Data and Code 

 
GitHub Project Repository 

 
LinkedIn FirmAI Profile 
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Trading Strategies 

An important first step in constructing an actively managed portfolio is to identify assets and trading 
strategies that can benefit the investor. In this section trading, all strategies are given a machine 
learning interpretation and the terminology is used loosely. CTA is a strategy where one takes a 
position in an asset only after a trend appears in the pricing data. Reinforcement learning strategies 
uses statistical and machine learning tools to maximise a reward function.  Reconstructed asset 
strategies seek to uncover arbitrage by reconstructing tradeable assets (derivate) using individual 
components. Quantamental strategies offers additional information by deriving fair valuations using 
machine-learning models. Event-driven strategies puts a probability on an outcome occurring and use 
this probability to consider whether they can identify a viable trading opportunity. Statistical arbitrage 
seeks mispricing by detecting security relationships and potential anomalies believing the anomaly 
will return to normal.  Factor investing involves the acquisition of assets that exhibit a trait associated 
with promising investment returns. Systematic global macro, which relies on macroeconomic 
principles to trade across asset classes and countries. Unsupervised strategies are any strategies that 
make use of an unsupervised learning method to improve the strategy's prediction accuracy and 
profitability. Free agent strategies are gradient free reinforcement learning strategies that rely on 
random movements and introduction of Gaussian movements to select the best performing agents.  
Gradient agent are reinforcement learning strategies that seek to maximise a reward function though 
a method known as gradient descent. Supervised learning strategies make price or classification 
prediction for a point of time in the future that can be used to design trading strategies. 

In the examples that follow, I sometimes neglect to include the code, the data, and sometimes both. 
This is mostly due to copyright and data policy concerns. The strategies in this paper comes from my 
own work, collaborations and the work of others. In total, there are 15 distinct trading varieties and 
around 100 trading strategies. Where the work is my own, I try to, as best I can provide for the full 
pipeline. Note: this is not investing advice. 
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Exhibit 1: Financial Machine Learning in Portfolio Construction 

 

 

Exhibit 1 outlines a few different ways in which machine learning can be used in portfolio 
construction. Portfolio construction can broadly be broken into trading strategies4 and weight 
optimization. In the first part of this series we will look at trading strategies and in the second part we 
will look at weight optimization. The trading strategy styles in the first three streams of financial 
machine learning research, Price, Event, and Value, can be split into unique trading themes depending 
on the data used and the outcome one is trying to predict. Price strategies include Technical, 
Systematic Global Macro, and Statistical Arbitrage, because of the central role price has to play in the 
input data and predicted outcomes. Event strategies include Trend, Soft-Event, and Hard-Event 
themes, because of the need to predict a change. Value strategies include Risk parity, Factor Investing 
and Fundamental themes, because these measures estimate intermediary values not directly related 
to the asset price. 

Each trading theme can end up using different machine learning frameworks.  For example, 
Technical and Statistical Arbitrage strategies can use a supervised or reinforcement learning approach 
or a combination of both, and Factor investing strategies can use a supervised or unsupervised 
learning approach. The best labelling practice or naming convention for machine learning trading 
strategies would be a combination of the trading theme, the method and the sub-method used. The 
sub-method drives one level deeper than the machine learning frameworks; for a reinforcement 
learning framework, the sub-method would for example be policy optimization, q-learning or model-
based approaches.  In this article, I will not provide information on data processing techniques like 
natural language processing, image and voice processing and feature generation; however, it should 

 
4 This article's primary focus is on showing how machine learning can be used to develop trading strategies as 
opposed to the performance of the trading strategies.  
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be noted that these techniques can form part of reinforcement, supervised, and unsupervised learning 
frameworks. 

 It is necessary to define the difference between the aforementioned themes. Technical 
trading is the use of market data and its transformations to predict the future price of an asset. Trend 
trading are strategies where one takes a position in the asset only after you predict a change in trend. 
Statistical arbitrage seeks mispricing by detecting asset relationships and/or potential anomalies, 
believing the anomaly will return to normal. Risk parity strategies diversifies across assets according 
to the volatility they exhibit; when one asset class’s volatility exceeds another rebalancing can occur 
by selecting individual units within each asset class or simply by using leverage. Event trading involves 
the prediction of hard or soft financial events like corporate defaults, mergers and acquisitions, and 
earnings surprises. Factor investing attempts to buy assets that exhibit a trait historically associated 
with promising investment returns. Systematic global macro relies on macroeconomic principles to 
trade across asset classes and countries. Fundamental trading relies on the use of accounting, 
management and sentiment data to predict whether a stock is over or undervalued. In this section, I 
will provide machine learning applications for some of these trading themes.  

As soon as you have trained your machine learning model, you can decide whether you want 
to use the model as part of a greater ensemble of models to create an improved final prediction model 
that would be used for trading purposes. This ensemble of models can additionally pass through a 
second supervised machine learning model that would decide on the most profitable model weighting 
scheme, this is known as a stacked model.  Once you have devised a few independently stacked trading 
models, you can pass the proprietary model returns to an unsupervised-learning portfolio-weight-
optimization scheme like hierarchical risk parity for the final strategy allocation. It is currently feasible 
to substitute a large portion of traditional algorithmic trading techniques with their machine learning 
equivalents.  

It’s possible to construct a strategy that ‘learns’ all the way down. For example, although one 
can create one reinforcement learning agent that are able to ingest a lot of data and make profitable 
decisions inside an environment, you are often better off to create more simple agents at the lower 
level while pyramiding additional decision-making responsibilities upwards. Lower level agents can 
look at pricing, fundamental and limited capital market data while a meta-agent can select or combine 
strategies based on potential regime shifts that happen at the economic level and only make the 
trading decisions then5.  

A meta-learner can choose between a few hundred models based on the current macro-
regime. At the end, all the meta learners, or depending on how deep you go, meta-cubed learners, 
should form part of the overall portfolio. The core function is to carry our portfolio level statistical 
arbitrage to the outmost extreme using all the tools available financial or otherwise. You needn’t use 
an additional level of reinforcement or supervised learning algorithms; you can also use unsupervised 
clustering algorithms. You can discover multiple economic regimes by using k-nearest neighbours 
(KNN) clustering, an unsupervised learning technique, to select the potential regime of the last 30-
days. Then one can select strategy by looking at the historic success across all regime types6.  

Machine learning is ‘limitless’ in the sense that you can tweak it endlessly to achieve some 
converging performance ceiling. Some of these tweaks include the different methods to perform 
validation, hyperparameter selection, up-and down-sampling, outlier removal, data replacement, and 
so on. Features can also be transformed in myriad ways; the dimensions of features can be reduced 

 
5 As a result, it is not always necessary, nor optimal, to include all the data at the lower modelling level and it 
therefore becomes an optimization question in itself to decide at what modelling level to use the data in your 
hierarchical modelling structure. 
6 While doing this, pay attention to the stability of clusters. The assignments might not persist in time series; 
MiniBatch and Ward clustering algorithms tend to be more persistent. 
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or inflated; variables can be generated through numerous unsupervised methods; variables can also 
be combined, added, or removed; models can be fed into models; and on top of that it is possible to 
use all machine learning frameworks, i.e., supervised, reinforcement and unsupervised learning, 
within a single prediction problem. The only way to know whether any of these adjustments are 
beneficial is to test it empirically on validation data.  

How do we know if any of these adjustments would lead to a better model? Most of the time 
we can use proxies for potential performance like the Akaike information criterion (AIC), or feature-
target correlation. These approaches get us halfway towards a good outcome. The best approach is 
to re-test the model each time a new adjustment is introduced. The tests should not be performed on 
the data that would be used in testing the performance of the model, i.e. the holdout set; instead a 
separate validation set should be specified for this purpose. It is also preferable to change the 
validation data after each new empirical test to ensure that these adjustments do not overfit the 
validation set; one such approach is known as K-Fold cross-validation where the validation set is 
randomly partitioned into K equal-sized subsamples for each test. 

In this article, I will survey a few ways in which machine learning can be used to enhance or 
even create trading strategies. As stated, we are only limited by our imagination when devising 
machine learning strategies. In this section, I will highlight nine different trading varieties that make 
use of a reinforcement, supervised, unsupervised or a combination of learning frameworks. I named 
these strategies Tiny RL, Tiny VIX CMF, Agent Strategy, Industry Factor, Global Oil, Earnings Surprise 
Prediction, Deep Trading, Stacked Trading and Pairs Trading. I organised them according to machine 
learning framework and each strategy is titled by name, theme, method, and sub-method. 

 

Tiny CTA 

Credit Man Group  

Momentum refers to the persistence of returns. Winners tend to keep on winning and losers keep on 
losing. In this momentum strategy, a CTA-momentum signal is built on the crossover signal of 
exponentially weighted moving averages. One selects three sets of time-scales with each set 
consisting of short and long exponentially weighted moving averages (EWMA), 2. 𝑆𝑘 =
(8,16,32), 𝐿𝑘 = (24,48,96). Each of these numbers translates in a decay factor that is plugged into 
the standard definition of EWMA. The half-life is given by: 

𝐻𝐿 =  
log (0.5)

log (
𝑛 − 1
𝑛 )

⁄  

For each 𝑘 = 1,2,3 one calculate 

𝑥𝑘 = 𝐸𝑊𝑀𝐴[𝑃|𝑆𝑘] − 𝐸𝑊𝑀𝐴[𝑃|𝐿𝑘] 

The next step is to normalise with a moving standard deviation as a measure of the realised 3-months 
normal volatility (PW=63) 

𝑦𝑘 =
𝑥𝑘

𝑅𝑢𝑛. 𝑆𝑡𝐷𝑒𝑣[𝑃|𝑃𝑊]
 

The series is normalised with the realised standard deviation over the short window (SW=252) 

𝑧𝑘 =
𝑦𝑘

𝑅𝑢𝑛. 𝑆𝑡𝐷𝑒𝑣[𝑦𝑘|𝑃𝑊]
 

Next one calculate an intermediate signal for each 𝑘 = 1,2,3 via a response function 𝑅 
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{

𝑢𝑘 = 𝑅(𝑧𝑘)

𝑅(𝑥) =  
𝑥𝑒𝑥𝑝(−𝑥

2

4⁄ )

0.89

 

 

Then the final CTA momentum signal is the weighted sum of the intermediate signal where we have 

chosen equal weights, 𝑤𝑘 =
1

3
 

𝑆𝐶𝑇𝐴 = ∑𝑤𝑘𝑢𝑘

3

𝐾=1

 

For the first strategy, I did not include any actual machine learning adjustments, but I chose an 
example where it is extremely easy to add.  By identifying all the arbitrarily chosen parameters like 
𝑆𝑘 , 𝐿𝑘,𝑎𝑛𝑑 𝑤𝑘 and optimising them using a reinforcement-learning algorithm one can venture to 
improve the Sharpe ratio or simply the returns. See the next strategy for an implementation of a tiny 
reinforcement-learning algorithm and see if you can apply the framework to this example.   

Resources: 

See this paper and blog for further explanation.  

Data, Code 

 

REINFORCEMENT LEARNING 

Reinforcement learning (RL) in finance comprises the use of an agent that learns how to take actions 
in an environment to maximise some notion of cumulative reward. We have an agent that exists in a 
predefined environment, the agent receives as input the current state 𝑆𝑡 and is asked to take an action 
𝐴𝑡  to receive a reward 𝑅𝑡+1, the information of which can be used to identify the next optimal action, 
𝐴𝑡+1 given the new state 𝑆𝑡+1. The final objective function can be the realised/unrealised profit and 
loss and even risk-adjusted performance measure like the Sharpe Ratio 

 

Tiny RL 

Credit Teddy Koker 

In this example we will make use of gradient descent to maximise a reward function. The Sharpe ratio 
will be used as the reward function. The Sharpe ratio is used as an indicator to measure the risk 
adjusted performance of an investment over time. Assuming a risk-free rate of zero, the Sharpe ratio 
can be written as: 

𝑆𝑇 =
𝐴

√𝐵 − 𝐴2
 

Further, to know what percentage of the portfolio should buy the asset in a long only strategy, we can 
specify the following function which will generate a value between 0 and 1.  

𝐹𝑡 = 𝑡𝑎𝑛ℎ(𝜃
𝑇𝑥𝑡) 

The input vector is  𝑥𝑡 = [1, 𝑟𝑡−𝑀 , … , 𝐹𝑡−1] where 𝑟𝑡  is the percent change between the asset at time 
𝑡 and 𝑡 − 1, and M is the number of time series inputs. This means that at every step the model will 
be fed its last position and a series of historical price changes that is used to calculate the next position. 
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Once we have a position at each time step, we can calculate our returns 𝑅 at each time-step using the 
following formula. In this example, 𝛿 is the transaction cost.  

𝑅𝑡 = 𝐹𝑡−1𝑟𝑡 − 𝛿|𝐹𝑡 − 𝐹𝑡−1| 

To perform gradient descent, one must compute the derivative of the Sharpe ratio with respect to 

theta, or 
𝑑𝑆𝑇

𝑑𝜃
 using the chain rule and the above formula. It can be written as: 

𝑑𝑆𝑇
𝑑𝜃

= ∑(
𝑑𝑆𝑇
𝑑𝐴

𝑑𝐴

𝑑𝑅𝑡
+
𝑑𝑆𝑇
𝑑𝐵

𝑑𝐵

𝑑𝜃
) . (

𝑇

𝑡=1

𝑑𝑅𝑡  

𝑑𝐹𝑡

𝑑𝐹

𝑑𝜃
+
𝑑𝑅𝑡
𝑑𝐹𝑡−1

𝑑𝐹𝑡−1
𝑑𝜃

) 

 

Resources: 

See this paper and/or blog for further explanation.  

Data, Code  

 

Tiny VIX CMF 

With Andrew Papanicolaou 

CBOE Volatility Index (VIX) and Futures on the Euro STOXX 50 Volatility Index (VSTOXX) are liquid and 
so are exchange-traded-notes/exchange-traded-funds (ETNs/ETFs) on VIX and VSTOXX. Prior research 
shows that the future curves exhibit stationary behaviour with mean reversion toward a contango. 
First, one can imitate the futures curves and ETN price histories by building a model and then use that 
model to manage the negative roll yield. The Constant Maturity Futures (CMF) can be specified as 
follows: 

 

Denote 𝜃 = 𝑇 − 𝑡 to have constant maturity,  𝑉𝑡
𝜃 = 𝐹𝑡,𝑡+0, for 𝑡 ≤ 𝑇1 ≤ 𝑡 + 𝜃 ≤ 𝑇2 define  

𝑎(𝑡) =  
𝑇2 − (𝑡 − 𝜃)

𝑇2 − 𝑇1
 

Note that: 

• 0 ≤ 𝑎(𝑡) ≤ 1 
• 𝑎(𝑇1 − 𝜃) = 1 𝑎𝑛𝑑 𝑎(𝑇2 − 𝜃) = 0 
• 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛 𝑡 

 

The CMF is the interpolation, 

𝑉𝑡
𝜃 = 𝑎(𝑡)𝐹𝑡

𝑇1 + (1 − 𝑎(𝑡))𝐹𝑡
𝑇2 

where 𝑉𝑡
𝜃 is a stationary time series.  

 

One can then go on to define the value of the ETN so that you take the roll yield into account. I want 
to focus on maturity and instrument selection, and therefore ignored the roll yield and simply focused 
on the CMFs. But, if you are interested, the value of the ETN can be obtained as follows. 
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𝑑𝑙𝑡
𝑙𝑡
= 
𝑎(𝑡)𝑑𝐹𝑡

𝑇1 + (1 − 𝑎(𝑡))𝑑𝐹𝑡
𝑇2

𝑎(𝑡)𝐹𝑡
𝑇1 + (1 − 𝑎(𝑡))𝐹𝑡

𝑇2
+ 𝑟𝑑𝑡 

where r is the interest rate.  

Unlike the Tiny VIX CMF approach, this strategy makes use of numerical analyses before a 
reinforcement learning step. First, out of all seven securities (J), establish a matrix of 1 and 0 
combinations for simulation purpose to obtain a matrix of 27 − 2 = 126 combinations. Then use a 
standard normal distribution to randomly assign weights to each value in the matrix. Create an inverse 
matrix and do the same. Now normalise the matrix so that each row equals one in order to force 
neutral portfolios. The next part of the strategy is to run this random weight assignment simulation N 
(600) number of times depending on your memory capacity as this whole trading strategy is serialised. 
Thus, each iteration (N) produces normally distributed long and short weights (W) that have been 
calibrated to initial position neutrality (Long Weights = Short Weights); the final result is 15,600 trading 
strategies.  

The next part of this system is to filter out strategies with the following criteria. Select the top X 
percent of strategies for their highest median cumulative sum over the period. From that selection, 
select the top Y percent for the lowest standard deviation. Of that group, select Z percent again for 
the highest median cumulative sum strategies. X, Y and Z are risk-return parameters that can be 
adjusted to suit your investment preferences. In this example, they are set at 5%, 40% and 25% 
respectively. It is possible to efficiently select these parameters by adding them to the reinforcement 
learning action space. Of the remaining strategies, iteratively remove highly correlated strategies until 
only 10 (S) strategies remain. With that remaining 10 strategies, which have all been selected using 
only training data, use the training data again to formulise a reinforcement learning strategy using a 
simple MLP neural network with two hidden layers to select the best strategy for the specific month 
by looking at the last 6 months returns of all the strategies, i.e., 60 features in total. Finally test the 
results on an out of sample test set. Note in this strategy no hyperparameters selection was done on 
a development set, as a result, it is expected that results can further be improved.   

Resources: 

Data, Code 

 

Free Agent 

Evolutionary: 

A large portion of reinforcement learning algorithms is optimised using Q-learning or its deep learning 
equivalent, Deep-Q learning. There are ‘better’ algorithms out there such as policy gradient and its 
variants like the Actor-Critic method. Although the Actor-Critic model performs well, it can take a very 
long time to train. The reason reinforcement learning is so slow because the gradients are hard to find. 
Unlike supervised learning, there is no clear gradient direction for each of the parameters in the 
network. The gradient information appears occasionally when the environment gives a reward 
(penalty). Most of the time the agent takes an action without knowing whether it is useful or not. The 
reinforcement learning algorithm will be on a low error high reward surface and thus are more likely 
to be initialised on a flat surface where it is hard to move towards better performance. It is not 
presented with informative reward and penalty signals. In effect, the agent more or less performs a 
random-walk for a long unproductive amount of tie. For some problems, it might feel like the policy-
gradient approach is no better than random search.  
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We can look to gradient-free approaches to reinforcement learning for help. Using genetic algorithms 
one can find the parameters that best defines a good performing agent. You start with a certain 
number of predefined agents (i.e. potential trading strategies) with randomly initialised parameters. 
Some of them by chance will outperform others. Here is where the evolution comes to play and 
resurrects the concept of the ‘survival of the fittest’. The algorithm selects the top performing decile 
of agents and add a bit of Gaussian noise to the parameters so that in the next iteration the agent gets 
to explore the neighbouring space to identify even better performing strategies. It is down to the core 
a very simple concept. One can further improve these results by changing some of the input 
parameters to the genetic algorithm for example the hyperparameters like the window size, 
population size, variance, and learning rate. To do this one can make use of Bayesian optimisation. In 
the notebook there are two models, the first is a simple evolutionary strategy agent and the second 
makes use of Bayesian optimisation.   

Resources: 

Code and Data 

 

Gradient Agent  

Here, 20+ reinforcement learning sub-methods are developed using different algorithms, the first 
three in the code supplement do not make use of RL; their rules are determined by arbitrary inputs. 
This includes a turtle-trading agent, a moving-average agent, and a signal-rolling agent. The rest of the 
coding notebook contains progressively more involved reinforcement learning agents. The notebook 
investigates, among others, policy gradient agents, q-learning agents, actor-critic agents, and some 
neuro-evolution agents and their variants. With enough time, all these agents can be initialised, 
trained and measured for performance. Each agent individually generates a chart that contains some 
of the performance information as shown in Exhibit 2.   

Exhibit 2: Example of a Reinforcement Learning Strategy's Performance 

 

In this section we will look at three of the most popular methods, being Q-learning, Policy Gradient, 
and Actor-Critic. Some quick mathematical notes: s=states, a=actions, r=rewards. In addition, action 
value functions Q, state-value functions V, and advantage functions A, are defined as: 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) =  ∑ 𝐸𝜋𝜃[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡 , 𝑎𝑡]

𝑇

𝑡′=𝑡

 

𝑉𝜋(𝑠𝑡) = 𝐸𝑎𝑡~𝜋𝜃(𝑎𝑡|𝑠𝑡)
[𝑄𝜋(𝑠𝑡 , 𝑎𝑡)] 

𝐴𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄
𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉

𝜋(𝑠𝑡) 
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Then, 𝑉∅
�̂�(𝑠𝑡) is the fitted value function for 𝑉𝜋(𝑆𝑡) 

 

Q-learning: is an online action-value function learning with an exploration policy, e.g., epsilon-greedy7. 
You take an action, observe, maximise, adjust policy and do it all again.  

 

Take some action 𝑎𝑖  and observe (𝑠𝑖 , 𝑎,𝑖 , 𝑠𝑖
′, 𝑟𝑖) 

𝑦𝑖 = 𝑟(𝑠𝑖 , 𝑎𝑖) + 𝛾max
a′
𝑄𝜃(𝑠𝑖

′, 𝑎𝑖
′) 

∅ ← ∅ − 𝛼
𝑑𝑄∅
𝑑∅

(𝑠𝑖 , 𝑎𝑖)(𝑄𝜃(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖) 

Then explore with the epsilon-greedy policy: 

𝜋(𝑎𝑡|𝑎𝑡) = {
1 − 𝜖 𝑖𝑓 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡𝑄𝜃(𝑠𝑡 , 𝑎𝑡)

𝜖/(|𝐴| − 1)  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Policy Gradients: here you maximise the rewards by taking actions where higher rewards are more 
likely.  

 

Sample {𝜏𝐼}  from  𝜋𝜃(𝑎𝑡|𝑠𝑡) 

∇𝜃𝐽(𝜃) ≈∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡
𝑖 |𝑠𝑡

𝑖))(∑ 𝑟(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖))
𝑡𝑡𝑖

 

𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜃) 

 

Actor-Critic is a combination of policy gradient and value-function learning. In this example, I will focus 
on the online as opposed to the batch model.  

 

Take action 𝑎 ~𝜋𝜃(𝑎|𝑠) , get (𝑠, 𝑎, 𝑠′, 𝑟) 

Update 𝑉∅
�̂� using target 𝑟 +  𝛾𝑉∅

�̂�(𝑠′) 

Evaluate 𝐴�̂�(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝑉∅
�̂�(𝑠′) − 𝑉∅

𝜋(𝑠)̂  

∇𝜃𝐽(𝜃) ≈  ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑠)𝐴�̂�(𝑠, 𝑎) 

𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜃) 

Code and Data 

 

 

 

 
7 Epsilon-greedy is very simple, keep track of the average pay-out of each strategy and select the strategy with 
the highest current average pay-out. It is therefore an exploitative as opposed to an explorative policy.  
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Quantamental  

In my experience, Quantamental strategies are intelligent data driven valuations. A good example of 
a machine learning Quantamental strategy is a project I worked on in late 2017. The core goal of the 
project was to estimate a fair valuation of privately-owned restaurant chains. A secondary 
consequence of the project was the ability to predict whether a publicly traded restaurant was under 
or overvalued. To do this alternative data was gathered at an employee, customer, shareholder and 
management level for the parent companies and where possible the individual locations. In the 
process, data was gathered from more than ten alternative sources using web-scrapers. This includes 
LinkedIn, Yelp, Facebook, Instagram and Glassdoor data. What followed was the use of an open 
sourced gradient boosting model from Yandex known as Catboost. In my final implementation I 
preferred a model called XGBoost, this is not shown in the code. I give the mathematical definition of 
the XGBoost model in the appendix. Both of these models are gradient boosting models (GBMs).  

Here is how one might come to understand a GBM model. The algorithms for regression and 
classification only differ in the loss function used and is otherwise the same. To create a GBM model 
we have to establish a loss function, L to minimise, to optimise the structure and performance of the 
model. This function has to be differentiable, as we want to perform a process of steepest descent, 
which is an iterative process of attempting to reach the global minimum of a loss function by going 
down the slope until there is no more room to move closer to the minimum.  For the regression task, 
we will minimise the mean squared error (MSE) loss function. The focus here is on 𝑓(𝒙𝑖) as this is the 
compressed form of the predictor of each tree i. 

 

 𝐿(𝜃) = ∑(𝒚𝒊 − 𝑓(𝑥𝑖))
2

𝑖

 

 

𝐿(𝜃) =∑(𝒚𝑖 − 𝑦 𝑖)
2

𝑖

 

                                             

 

 

                                              

Further, it is necessary to minimise the loss over all the points in the sample, (𝒙𝑖 , 𝑦𝑖): 

 
𝑓(𝒙) =∑𝐿(𝜃)

𝑁

𝑖=1

 

𝑓(𝒙) =∑𝐿(𝑦𝑖 , 𝑓(𝒙𝑖))

𝑁

𝑖=1

 

         

 

 

         

 

At this point we are in the position to minimise the predictor function, 𝑓(𝒙𝑖), w.r.t. x since we want a 
predictor that minimises the total loss of 𝑓(𝒙). Here, we simply apply the iterative process of steepest 
descent. The minimisation is done in a few phases. The first process starts with adding the first and 
then successive trees. Adding a tree emulates adding a gradient based correction. Making use of trees 
ensures that the generation of the gradient expression is successful, as we need the gradient for an 
unseen test point at each iteration, as part of the calculation 𝑓(𝒙). Finally, this process will return 
𝑓(𝒙) with weighted parameters. The detailed design of the predictor, 𝑓(𝒙), is outside the purpose of 
the study, but for more extensive computational workings see the appendix. 
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Among other things, the algorithm predicted that BJ’s restaurants market value was trading about 
40% below its competitors with similar characteristics; within the year the algorithm was proven right 
and the price just about doubled compared to its model-defined competitors. This project was 
especially interesting because no company specific financial data was used as inputs to the model, and 
the response variable was simply the market value.  In the process, I also developed an interactive 
report that is now open sourced. If you have a look at the report, the light blue line signifies what the 
‘AI’ recommends the cumulative return should have been after 5 years, whereas the dark blue line is 
the cumulative return over time for BJ’s; being about 40 percentage points lower than what the AI 
believed to be a ‘fair’ market value.  I am not going to make everything open for this project, but the 
links below would give you some crumbsi.  

Resources: 

Web-scrapers, Data, Code, Interactive Report, Paper 

 

 

Credit Rating Arbitrage 

Three years ago, I was particularly interest in agency credit ratings. As one does, I developed a 
prediction model to come to grips with the issues of the credit rating industry. The process involved 
the training of an XGBoost model to predict companies’ credit ratings and then cross-sectionally 
applying prediction to new companies to remove time bias and investigate rating discrepancies. In 
other words, the companies’ actual rating are compared against their model predicted ratings; which 
leaves you with firms that have deviated the most from learned patterns.  

With this model and prediction in place, you can hypothesise that the divergence is either a true 
reflection of a rating change to come, in which case you can establish a long-short portfolio to short 
positive and long negative deviations and the literature clearly shows that a rating change has an 
impact on the price of the company’s stock. This did not produce great results. Lastly, one can simply 
call the difference soft credit risk – that which cannot be picked up by financials (the only input data 
used), and then use that as another type of risk indicator for firms. This post-hypothesis did end up 
working well. I haven’t formulised this theory and I am happy for anyone to pick this project up and 
run with it.  

The model has been shown to perform equivalent to that of a rating agency in predicting defaults. 
This leads one to believe that rating agencies truly suffer from some revenue and other incentive 
biases given that the model is fed only a small amount of data compared to that available to the 
agencies. With this model in hand one can easily create a free only rating agency whereby you certify 
peoples ratings using your models, all you need is 4 years financial data. With this model, unlike the 
agency ratings, it is also possible to assign rating intervals as opposed to punctual ratings.  
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Resources: 

Code 

 

Event Driven Arbitrage 

Earnings Surprise 

Here we investigate an earnings prediction strategy. It is a classification task where the response 
variable for the machine learning model is the occurrence of an earnings surprise. An earnings surprise 
is simply defined as a percentage change from the analyst's earnings per share (EPS) expectation and 
the actual EPS that crosses a predefined threshold s. The percentage thresholds, s, expresses the 
magnitude of the surprise.  

X  =   
 𝐸𝑃𝑆𝐴𝐶𝑖𝑡−𝐸𝑃𝑆𝐴𝑁 𝑖𝑡

𝐸𝑃𝑆𝐴𝑁𝑖𝑡
 - 1  

  𝑆𝑈𝑅𝑃𝑖𝑡𝑠𝑥  = 0, 𝑤ℎ𝑒𝑟𝑒    𝑋 < −𝑆,  Negative 

𝑆𝑈𝑅𝑃𝑖𝑡𝑠𝑥 =  1, 𝑤ℎ𝑒𝑟𝑒 − 𝑆 ≤ 𝑋 ≤ 𝑆,  Neutral    

𝑆𝑈𝑅𝑃𝑖𝑡𝑠𝑥  = 2, 𝑤ℎ𝑒𝑟𝑒    𝑋 > 𝑆,   Positive    

To provide some clarity, i is the ith firm in the sample, t is the time of the quarterly earnings 
announcement, s is the respective constant surprise threshold, x is a constant percentage of the 
sample of earnings announcements sorted by date, EPSAN is analyst earnings per share consensus 
forecast, and EPSAC is the actual earnings per share as reported by the firm.  

Below is high-level pseudo code to provide a better understanding of some of the core concepts of 
the developed black-box model and its relationship with the training set, test set, prediction values, 
and metrics. 

(1)  𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡𝑇𝑟𝑒𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑇𝑟𝑎𝑖𝑛𝑋 , 𝑆𝑈𝑅𝑃𝑖𝑡𝑠(0 ∶  𝑥) , 𝑉𝑎𝑙𝑖𝑑, 𝑃𝑎𝑟𝑎𝑚) 
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(2)  𝑃𝑟𝑒𝑑𝑆𝑈𝑅𝑃𝑖𝑡ℎ = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑇𝑒𝑠𝑡𝑋) 

(3)  𝑀𝑒𝑡𝑟𝑖𝑐𝑠 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠(𝑆𝑈𝑅𝑃𝑖𝑡𝑠(𝑥 ∶ 1), 𝑃𝑟𝑒𝑑𝑆𝑈𝑅𝑃𝑖𝑡ℎ) 

Using the predictions, 𝑃𝑟𝑒𝑑𝑆𝑈𝑅𝑃𝑖𝑡ℎ  you can expresses a simple strategy by going long (short) on 
stocks that are expected to experience a positive (negative) surprise tomorrow (t), at closing today (t-
1), and liquidating the stocks at closing tomorrow (t). The stocks are equally weighted to maintain 
well-diversified returns for the day, as there is, on average, only four firms in a portfolio of expected 
surprises, but there can be as few as one firm in a portfolio. For each day, I form stocks into positive 
and negative surprise prediction portfolios for surprises that deviate from -50% to 50% in order to 
select the best performing threshold. The preferred threshold is selected based on tests done against 
a validation set. The results in the validation set show that the best trading strategies exist between 
5%-20%, with 15% being the optimal trading strategy for positive surprises. 

The strategies recommended in this section fully invest all capital in each event. It is therefore 
important to include some sort of loss minimisation strategy. As a result, one strategy incorporates a 
stop-loss for stocks that fell more than 10%. Here 10% is only the trigger, and a conservative loss of 
20% is used to simulate the slippage.   

 

  𝑅𝑖𝑡 =
(𝑆𝑖𝑡 − 𝑆𝑖,(𝑡−1))

𝑆𝑖,(𝑡−1)
 , 𝑖𝑓  

 𝑆𝑙𝑖𝑡 − 𝑆𝑖 ,(𝑡−1)

𝑆𝑖,(𝑡−1)
< −10%,   𝑅𝑖𝑡 = −20%  

 

The equal weighted return of a portfolio of surprise firms is then calculated as, 

 𝑅𝑝𝑡 = 
1

𝑛
∑ 𝑅𝑖𝑡
𝑛𝑝𝑡
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,  𝑅𝑝𝑡 = 𝑅𝑀𝑡  

In this equation 𝑖 is all the firms that experience surprises on date 𝑡. Therefore, 𝑅𝑖𝑡 is the return on 
the common stock of firm i on date t. 𝑛𝑝𝑡  is the number of firms in portfolio p at the close of the 

trading on date t-1. 𝑅𝑀𝑡 is the market return rate.   
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Exhibit 3: Portfolio Value 15% Surprise Prediction Strategy 

 

Exhibit 3 reports the cumulative portfolio returns of buying and holding positive and negative surprises 
predictions for all firms with a market value of $10 billion or more. On average, there are about four 
firms for each portfolio day. On days where no trading surprises occur, a position in the market is 
taken. The band in the middle is the 99% significance band obtained from 1000 Monte Carlo 
simulations that randomly takes a position in firms before an earnings announcement. In total there 
are 2944 trading days for the long strategy; 215 of these days are returns from earnings surprises 
comprising 774 firms, and the rest are simple market return days.  

 

 Resources: 

Code, Paper 

 

Bankruptcy Prediction 

The bankruptcy task involved the acquisition of data that includes all corporate bankruptcies in the 
US. A bankruptcy prediction model was created to predict these bankruptcies using only standardised 
accounting information, one and two years before the bankruptcy occurs. The table below reports on 
the outcome of the model by means of a confusion matrix.  

Table 1: Healthy and Bankrupt Confusion Matrix. 

Aggregated Health and Bankrupt 
Firms Matrix 

Predicted 
Sample Proportion 

Healthy Bankrupt 

A
ct

u
al

 Healthy 29041 - TN 116 - FP 0.96 

Bankrupt 805 - FN 258 - TP 0.03 

Precision 0.97 0.69 30220 
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Improvement 0.01 0.66 - 

This bankruptcy prediction task solves for a binary classification problem that produces a 2×2 matrix. The 
columns of the matrix represent the predicted values, and the rows represent the actual values for bankrupt 
and healthy firm predictions. In the cross-section of the rows and columns, we have the True Positive (TP), 
False Negative (FN - type II error), False Positive (FP - type I error)), and True Negative (TN) values. The sample 
proportion on the far right is equal to all the actual observations of a certain classification divided by all the 
observations. The precision is calculated by dividing the true positives (Bankruptcies) with the sum of itself 
and the false negatives (Healthy). An example along the second column: 258/(116 + 258)  =  69%. The 
improvement is the percentage point improvement the prediction model has over a random choice 
benchmark.  

 

The average ROC (AUC ) of more than ten past decision tree ensemble studies (in literature: 2018) is 
around 0.927. The best performing is 0.997 and the worst performing is 0.859. In spite of the 
conservative sample selection in this chapter, the decision tree ensemble (XGBoost) model used in 
this study performed better than the average of past reported studies. It is also the best model when 
compared to other studies that only used accounting values as inputs. The average AUC of eight 
different neural network studies is 0.850, the best and worst performing past study has an AUC of 
0.901 and 0.750 respectively. The DCNN of this model achieved an AUC of 0.9142, making it the best 
performing neural network of all past research. 

 

 

Table 2: Model Comparison Using Different Inputs 

 Metrics All Data 50 Variables 
Model 

One Year Before 
Bankruptcy 

Two Years Before 
Bankruptcy 

ROC AUC Sore 0.9587 0.9408*** 0.9666** 0.9434*** 

Accuracy Score 0.9755 0.9700 0.9860 0.9837 

False Positive Rate 0.0037 0.0056 0.0010 0.0002 

Average Log Likelihood 0.1414 0.1795 0.1682 0.2206 

This table compares the performance of model that includes only 50 of the most predictive variables as inputs, 
a model that only includes bankruptcy observations one or two years before the filing. All statistical comparisons 
are made against the model called "All Data."  *p<.1 ** p<.05 *** p<.01. Significance levels are based on a two-
tailed Z test. 

Resources: 

Data, Code, Paper 

 

Filing Outcomes 

Following on from the bankruptcy prediction strategy, this study further contends that past research’s 
black-and-white view of solely predicting the occurrence of a legal bankruptcy is not sufficient; the 
reason being that the economic effect of the outcome is largely determined by the characteristics 
associated with the bankruptcy. Filing outcomes have great economic consequence for creditors and 
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shareholders. Stakeholders would want to know the likelihood of a litigated bankruptcy occurring as 
well as the likely filing outcomes associated with the bankruptcy. 

Binary Classification Performance for Predicting Bankruptcy Outcomes. 

Binary 

Classification 

Model 

ROC AUC 
Sore 

Accuracy 
Score 

Average 
Log 
Likelihood 

Average 
Precision 
Score 

False 
Positive 
Rate 

False 
Negative 
Rate 

Duration 0.62 0.56 0.67 0.69 0.66 0.26 

Survival 0.73 0.69 0.59 0.80 0.61 0.12 

Chapter 0.88 0.95 0.50 0.70 0.05 0.20 

Asset Sale 0.64 0.66 0.61 0.39 0.27 0.55 

Tort 0.54 0.90 0.40 0.17 0.05 0.83 

This table reports six important metrics for five alternative classification tests to predict the outcome of 
predicted bankruptcies. Duration classification is the first task to predict the binary outcome. This task involves 
the prediction of whether or not the disposition will take longer than a year after the initial filing. Survival 
predicts a binary outcome as to whether or a firm will re-emerge out of bankruptcy and remain in business for 
longer than 5 years. The Chapter task predicts whether the bankruptcy filing would be converted to Chapter 7 
or whether it will be a Chapter 11 filing. The Asset Sale model predicts whether the debtor will sell all or 
substantially all the assets during the Chapter 11 proceedings. The Tort classification task seeks to predict 
whether the bankruptcy would occur as a result of tortious actions such as product liability, fraud, pension, 
environmental and patent infringement claims. The above metrics have been fully defined in table X. 

 

The prediction of all filing outcomes is contingent on a correctly predicted bankruptcy outcome. All 
these models use simple accounting value inputs the year before the filing date. Filing outcomes have 
great economic consequence for creditors and shareholders. Stakeholders would want to know the 
likelihood of a litigated bankruptcy occurring as well as the likely filing outcomes associated with the 
bankruptcy. In the table below, I present the performance of five different filing outcome models. 

The first of these five is the chapter prediction model. It involves a prediction task of whether the 
bankruptcy will finally be filed under chapter 7 or chapter 11. The chapter prediction model performed 
the best of all other filing outcomes models. It achieved an AUC of 0.88. The survival prediction model 
that identifies whether the firm would emerge from bankruptcy performed second best with an AUC 
of 0.73. The prediction task that attempts to predict whether assets will be sold in a 363 Asset sale or 
by other means, came in third with an AUC of 0.64. The duration task, which involves the prediction 
of whether the bankruptcy proceedings would endure for longer than one year came in second to last 
with an AUC of 0.62. And lastly, the tort task had an AUC score of 0.54 which is only slightly higher 
than random. All prediction tasks performed better than random guessing.  

Resources: 

Data 

 

 

 

 

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1cDhrrAp07e-2TgrPQginXUNQpdbTpq-u


Statistical Arbitrage: 

Pairs trading is a simple statistical arbitrage strategy that involves finding pairs that exhibit similar 
historic price behaviour and then to, once they diverge, bet on the expectation that they will 

convergence. In a universe of assets over time, 𝑿𝑡, pick individual assets, 𝑋𝑡
𝑥, so that 𝑐𝑜𝑟𝑟(𝑋𝑡

𝑥1 , 𝑋𝑡
𝑥2) 

exceeds some threshold 𝑃. We can let 𝑋𝑡
1 and 𝑋𝑡

2 denote the prices of two correlated stocks, if we 
believe in the mean-reverting natureii and the ground truth of the shared correlation, we can initiate 
a mean-reverting process (𝑍𝑡) as follow, 𝑍𝑡 = 𝑋𝑡

1 −𝐾0𝑋𝑡
2, where 𝐾0, is a positive scalar such that at 

initiation 𝑍𝑡 = 0.  

This mean reverting process, i.e., the change in mean, is governed by 𝑑𝑍𝑡 = 𝑎(𝑏 − 𝑍𝑡)𝑑𝑡 +
𝜎𝑑𝑊𝑡 ,  𝑍0 = 0, where 𝑎 > 0 is the rate of reversion, 𝑏 the equilibrium level, 𝜎 > 0 the volatility, and 
𝑊𝑡 the standard Brownian motion.  This Brownian motion exists within the mean-reverting process, 
hence it can’t have drift. 𝑍𝑡 is thus the pairs position, 1 share long in 𝑋𝑡

1, 𝐾0 shares short in 𝑋𝑡
2 and 𝑑𝑍𝑡 

describes the underlying dynamic under strict mathematical assumptions.  

Given the construction, we expect the prices of assets to revert to normal. We can specify an easy and 

arbitrary trading rule, which specifies that when 𝑎𝑏𝑠(𝑋𝑡
1 − 𝐾0𝑋𝑡

2)/(
1

𝑛
∑ 𝑎𝑏𝑠(𝑋𝑡

1 − 𝐾0𝑋𝑡
2))𝑛

𝑡=1  > 0.1, 

you sell the highly priced asset and buy the lowly priced asset, and do the reverse as soon as the above 
formula hits 0.5; at which point you assume that this might be the new natural relational equilibrium.  
In practice we also impose additional state constraints, for example, we require, 𝑍𝑡 ≥ 𝑀, where 𝑀 is 
the stop loss-level in place for unforeseeable events and to satisfy a margin call, further alterations 
should include transaction and borrowing costs. Pair selection and trading logic can be much more 
involved than the above. Instead of using simple trading rules, dynamic model based approaches can 
be used to define the trading logic. The before mentioned mean reversion process can be discretised 
into an AR process where the parameters can be estimated iteratively and used in the trading rule. 

Researchers can do pair selection using distance, rolling OLS cointegration, or Kalman filter 
cointegration. Unsupervised learning methods like, hierarchical clustering, k-means, VAE embedding 
or DBSCAN have also been used with mixed success. Although unsupervised learning methods might 
not be the best method to directly select pairs from, it is a good intermediate step to create clusters 
out of which traditional pairs selection strategies can be used. For example, see the following 
notebook from Yicheng Wang for the available code (data not provided) that uses DBSCAN and PCA.  
Finally in the last step one can make use of an RL agent to identify the best enter and exit 
opportunities, i.e., using an RL agent to define the trading rules. I am yet to connect unsupervised 
learning with reinforcement learning. I would leave it out there for others to do. I have developed a 
model here, without any strategy attached. If I do come back to this project, I would not use this 
model. I would start from scratch, building the unsupervised step into the strategy from the start.  If 
you are even more adventurous, have a look at the following code and data for an options arbitrage 
(code, data)  and treasury future trading strategies (code, data; by Raphael Douady), and see if you 
are able to identify how you would be able to include a reinforcement-learning agent.  

 

Unsupervised Strategy 

Mixture Models 

Credit: Brian Christopher.  

The evidence shows that asset returns violate all the rules of stationarity. For a time series to be 
stationary it should have a constant mean, variance and covariance with leading or lagged values and 
the SPY returns exhibit nonstationarity in the mean, variance and demonstrate periods of variable 
autocorrelation.  You can plot the data to see if the mean and variance is constant and do the Dicky 
Fuller test for a unit root.   
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As a result we should expect predictions approximated by normal distribution measures like mean and 
variance to badly predict the future return distribution. Luckily this can also be tested like stationarity 
that be tested. In fact there is a test called the Komogorov-Smirnov 2 sample test that can be used to 
compare a test and predicted distribution. It provides a small p-value if there are strong evidence that 
the two data samples came from different distributions. However, the test is more commonly used to 
test the test and training samples themselves, which is what is done in the notebook. The results from 
the test shows that 70% of the train test splits reject the null hypothesis that the training and test data 
came from the same distribution. As a result, we need a modelling framework that can overcome 
these issues. Techniques that cannot accommodate the time varying properties of financial asset 
returns present a risk to our financial assets. 

GMM model can help overcome some of the times series prediction issues as it as an approach to 
approximate nonstationary distributions. Our biggest issue is that asset returns seems to be comprised 
from multiple distributions (regimes or states). Each regime has its own composition of characteristics  
like stable, risky, low and high volatility. If we argue that there is two regimes, stable and risk, we sit 
with the issue that we don’t know the mean and variance parameters for the regimes, because we 
invariably don’t know which datapoint comes from which regime. Fortunately, there is a solution to 
this problem, the devised solution is an expectation-maximisation algorithm. The expectation-
maximisation algorithm underpins many unsupervised learning methods including that of mixture 
modelling. It has use cases for when data is corrupted, missing or the parameters of the data 
generating process is unknown and lastly where it is not known which data generating process 
generated which data point.  

You start by guessing the parameters for the two different gaussian distributions you believe the time 
series exhibits. Assuming you are correct, you assign probability weights to each datapoint from both 
of the regimes. Then in an iterative process, we normalise the probabilities and estimate the 
parameter means and volatilities of the regimes. With this approach, we are guaranteed to improve 

the estimate at each iteration. 𝐸(𝑧𝑖𝑗) is the probability that 𝑥𝑖 was drawn from the 𝑗𝑡ℎ distribution.  

𝐸(𝑧𝑖𝑗) =  
𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇𝑗)

∑ 𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇𝑗)
2
𝑛

 

=
𝑒
−
1
2𝜎2

(𝑥𝑖−𝜇𝑗)
2

∑ 𝑒
−
1
2𝜎2

(𝑥𝑖−𝜇𝑛)
2

2
𝑛=1

 

The formula simply states that the expected value for zij  is the probability 𝑥𝑖 given 𝜇𝑗  divided by the 

sum of the probabilities that 𝑥𝑖 belonged to each 𝜇. After calculating all expected values 𝐸(𝑧𝑖𝑗) we 

can update the new 𝜇 values.   

 

𝑢𝑗 = 
∑ 𝐸(𝑧𝑖𝑗)𝑥𝑖
𝑚
𝑖=1

∑ 𝐸(𝑧𝑖𝑗)
𝑚
𝑖=1

 

 

This formula generates the maximum likelihood estimate. By repeating the expectation and 
maximisation steps, we are guaranteed to find a local maximum giving us the maximum likelihood 
estimation of our hypothesis. One question that has to be resolved is the number of components or 
regimes to select. Here we can make use of AIC or IC criterion to compare the relative suitability of 
different models. With the GMM model, we can sample directly from the posterior to generate new 
samples.  
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Now that we know what the model is, how do we apply it? Well one can use it for a range of tasks like 
classifying returns as outliers for filtering and data cleaning. One can use it in risk management to filter 
position sizes, trades, veto trades. For example if we predict a volatile regime going forward, we might 
want to reduce potion sizing.  

In this example, I specifically use GMMs to predict return distributions. We can use it to predict 
iteratively the distribution of our lookahead period. What the results in this study show is that the 
accuracy of the return distribution is better with less components. This leads one to question the use 
of a mixture model. In a further step, we can use a mixture model to implement an event study on 
post outlier returns. The analysis appears to show that there is a tradeable pattern based on our 
filtering conditions.  

Resources: 

Data, Code 

 

Pairs Trading  

Pairs trading is a simple statistical arbitrage strategy that finds pairs that exhibit similar historic price 
behaviour, and then, once they diverge, betting on the expectation that they will convergen. With 
unsupervised learning methods, we can add an extra safeguard by selecting stocks that are structurally 
similar. In a universe of assets over time, 𝑿𝑡, identify 𝑲𝑡  features that help to define the characteristic 
of the company. One can use features such as the price to earnings ratio, dividend yield, return on 
assets as well as some market based data like lagged returns and technical indicators.  

You can then use the data to perform K-mean clustering to reduce the distance between data-points 
around a predefined number of clusters.  Within each cluster pick the respective assets 𝑋𝑡

𝑥, so that 

𝑐𝑜𝑟𝑟(𝑋𝑡
𝑥1 , 𝑋𝑡

𝑥2) exceeds some threshold 𝑃. We can let 𝑋𝑡
1 and 𝑋𝑡

2 denote the prices of two correlated 
stocks, if we believe in the mean-reverting nature and the ground truth of the shared correlation, we 

can initiate a mean-reverting process (𝑍𝑡) as follow, 𝑍𝑡 = 𝑋𝑡
1 − 𝐾0𝑋𝑡

2, where 𝐾0, is a positive scalar 
such that at initiation 𝑍𝑡 = 0.  

This mean reverting process, i.e., the change in mean, is governed by 𝑑𝑍𝑡 = 𝑎(𝑏 − 𝑍𝑡)𝑑𝑡 +
𝜎𝑑𝑊𝑡 ,  𝑍0 = 0, where 𝑎 > 0 is the rate of reversion, 𝑏 the equilibrium level, 𝜎 > 0 the volatility, and 
𝑊𝑡 the standard Brownian motion.  This Brownian motion exists within the mean-reverting process; 

hence it can’t have drift. 𝑍𝑡 is thus the pairs position: 1 share long in 𝑋𝑡
1 and 𝐾0 shares short in 𝑋𝑡

2; 
and 𝑑𝑍𝑡 describes the underlying dynamic under strict mathematical assumptions.  

Given the construction, we expect the prices of assets to revert to normal. For all the clustered pairs 
we can specify an easy and arbitrary trading rule, which specifies that if 𝑎𝑏𝑠(𝑋𝑡

1 − 𝐾0𝑋𝑡
2)/

(
1

𝑛
∑ 𝑎𝑏𝑠(𝑋𝑡

1 − 𝐾0𝑋𝑡
2))𝑛

𝑡=1  > 0.1, then you sell the highly priced asset and buy the lowly priced asset, 

and you do the reverse as soon as the above formula hits 0.5, whereby you assume that this might be 
the new natural relational equilibrium.  In practice we also impose additional state constraints, for 
example, we require, 𝑍𝑡 ≥ 𝑀, where 𝑀 is the stop loss-level in place for unforeseeable events and to 
satisfy a margin call, further alterations should include transaction and borrowing costs.  

Pair selection and trading logic can be much more involved than the above. Instead of using simple 
trading rules, dynamic model-based approaches can be used to define the trading logic. The before 
mentioned mean reversion process can be discretised into an AR process where the parameters can 
be estimated iteratively and be used in the trading rule, this is called the Stochastic Spread Method.  

And instead of performing the final pair selection using distance, rolling OLS cointegration, or Kalman 
filter cointegration, unsupervised learning methods like, hierarchical clustering, K-means, VAE 
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embedding or DBSCAN8 can be used. Although unsupervised learning methods might not be the best 
method to directly select pairs, it is a good intermediate step to create clusters with K-means or out 
of which traditional pairs selection strategies can be used.   

 

SUPERVISED LEARNING: 

I have not turned any of the supervised learning methods into trading strategies yet. Here I am simply 
predicting the price of the stock a few days in advance, so the models can easily be transformed into 
directional trading strategies from this point. You can construct the trading policies by hand or rely on 
reinforcement learning strategies to ‘develop’ the best trading policies.  

Supervised learning (SL) techniques are used to learn the relationship between independent attributes 
and a designated dependent attribute. SL refers to the mathematical structure describing how to 
make a prediction 𝒚𝒊 given 𝒙𝒊. Instead of learning from the environment like RL, SL methods learn the 
relationships in data. All supervised learning tasks are divided in classification or regression tasks. 
Classification models are used to predict discrete responses (e.g., Binary 1, 0; Multi-class 1, 2, 3). 
Regression is used for predicting continuous responses. (e.g., 3.5%, 35 times, $35,000). In the 
examples that follow, we will both use classification and regression models.  

 

Industry Factor Investing 

In this example, we will look at the use of machine learning tools to analyse industry return 
predictability based on lagged industry returns across the economy (Rapach, Strauss, Tu, & Zhou, 
2019). A strategy that longs the highest and shorts the lowest predicted returns, returns an alpha of 
8%. In this approach, one has to be careful about multiple testing and post-selection bias. A LASSO 
regression9 is eventually used in a machine learning format to weight industry importance; but before 
that we should first formulate a standard predictive regression framework: 

𝒚𝒊 = 𝑎𝑖
∗𝜸𝑻 + 𝑿𝒃𝒊

∗ + 𝜺𝒊   𝑓𝑜𝑟 𝑖 = 1,… , 𝑁, 

where 

𝑦 = [𝑟𝑖,1…𝑟𝑖,𝑇]  ;  𝑋 =  [𝑥1…𝑥𝑁]  ; 𝑥𝑗 = [𝑟𝑖,0…𝑟𝑖,𝑇−1]  𝑓𝑜𝑟 𝑗 = 1,… , 𝑁 

𝑏𝑖
∗ = [𝑏𝑖,1

∗ …𝑏𝑖,𝑁
∗ ]  ; 𝜀𝑖 = [𝜀𝑖,1…𝜀𝑖,𝑇]   

 

In addition, the lasso objective (𝜸𝑻) can be expressed as follows, where 𝜗𝑖 is the regularisation 
parameter.  

arg𝑚𝑖𝑛
𝑎1∈𝑹,𝑏𝑖∈𝑅

𝑁
(
1

2𝑇
||y

i
− 𝑎𝑖𝜸𝑻 − 𝑿𝒃𝒊||

𝟐

𝟐
+ 𝜗𝑖||𝒃𝒊||𝟏) 

The LASSO regression generally performs well in selecting the most relevant predictor variables. Some 
argue that the LASSO penalty term over shrinks the coefficient for the selected predictors. In that 
scenario, one can use the selected predictors and re-estimate the coefficients using OLS. This sub 
model – an OLS regression model in this case – can be replaced by any other machine learning 
regressor. In fact, the main and sub-model can both be machine learning regressors, the first selecting 
the features and second predicting the response variable based on those features.     

 
8 Density-based spatial clustering of applications with noise.  
9 Lasso regressions shrink regression coefficients towards zero to encourages simple sparse models. 
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For additional practice, you can have a look at the following repositories and see if you can identify 
any machine learning use cases.  Factor analysis: 1. Mutual fund factors (data), 2. Equity factors (data), 
3. Penalised factors. 

Resources: 

Paper, Code, Data  

 

Stacked Trading 

This is purely experimental, it involves the training of multiple models (base-learners or level 1 
models), after which they are weighted using an extreme gradient boosting model (metamodel or 
level 2 model). In the first stacked model, which I will refer to as EXGBEF, we use autoencoders to 
create additional features. In the second model, DFNNARX, autoencoders are used to reduce the 
dimensions of existing features. In the second model, I include additional economic (130+ time series) 
and fund variables to the stock price variables. Similar to the Deep Trading example, we have price 
movement predictions, but we have not developed a trading policy yet. Exhibit 5 graphically shows 
the concept of stacking.  

 

Exhibit 5: Architecture of Stacked Models  

 

 

 

The training data X has m observations, and n features. There are M different models that are trained 
on X. Each model provides predictions ŷ for the outcome y which are then cast into a second level 

training data 𝑋(𝑙2) which is now m x M sized. The M predictions become features for this second level 
data. A second level model (or models) can then be trained on this data to produce the final outcomes 
ŷfin which will be used for predictions. With stacking it can help to use out-of-sample training data at 
each modelling level, otherwise the nth level model will be biased to use only the best performing 
model in the previous modelling level.   

Resources: 

Code and Data, Blog 

 

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1GwRrAY_oM2CD9dc6hehqfynqSFq50kxv
https://drive.google.com/open?id=1YP_ayHuGzedemXnPxTR_5zEneISdD7ku
https://drive.google.com/open?id=1cfrA3MuhJYUjfa8Yxvm2pcTbSNqPdNS6
https://drive.google.com/open?id=1fS9aNgOcN4L7cLmSTbBZfowr56tfEzcm
https://drive.google.com/open?id=1OmqcjSwGkk7yurPUsc0G3afUBncHxM2B
https://docplayer.net/120877135-Industry-return-predictability-a-machine-learning-approach.html
https://drive.google.com/open?id=1O0LQ_khTfsbFG5aN3-AqV6DEIRWQ6UuP
https://drive.google.com/open?id=1cc43729RyOPCsDJ3r46SdHcJJp1AUmaA
https://drive.google.com/open?id=11SG9KIWUxV9fgrrpAs0QifgGrcdzk2dh
https://www.kdnuggets.com/2017/02/stacking-models-imropved-predictions.html


Deep Trading 

There are 30 different neural network sub-methods investigated here. This includes Vanilla RNN, GRU, 
LSTM, Attention, DNC, Byte-net, Fairseq, and CNN methods10. The mathematics of the different 
frameworks are vast and would take too much space to include here. I have not turned any of the 
methods into trading strategies yet. Here, I am simply predicting the future price of the stock, so the 
models can easily be transformed into directional trading strategies from this point. You can construct 
the trading policies by hand or rely on reinforcement learning strategies to ‘develop’ the best trading 
policies.  

 

Exhibit 4: Architecture of RNN, GRU and LTSM cells.  

 

Exhibit 4 can help us to understand the major differences between the sub-methods. A Vanilla 
recurrent neural network (RNN) uses the simple multiplication of inputs (𝒙𝒕) and previous outputs 
(ℎ𝑡−1) passed through a tanh activation function. A Gated Recurrent Unit (GRU) introduces the 
additional concept of a gate that decides whether to pass a previous output (ℎ𝑡−1) to a next cell in an 
attempt to solve the vanishing gradient problem11. It is simply an additional mathematical operation 
performed on the same inputs. With the Long Short-Term Memory Unit (LSTM) an additional gate is 
introduced to the GRU method. Again, these are additional mathematical operations on the same 
inputs. Moving from RNN to LSTM we are simply introducing more 'control knobs' for the flow and 
mixing of input data to establish the final weights. The LSTM method is designed to focus on 
establishing weights that maintain information that persist for longer periods of time.  The code of 
these three methods and many others are available in the online supplement.  

 

Resources: 

Code and Data 

 

Systematic Global Macro 

When oil exits a bear market then the currency of oil producing nations should also rebound. With 
this strategy, we will investigate the effect the price of oil has on the Norwegian krone (NOK) and 
identify whether a profitable trading strategy can be executed. To start we need a ‘stabiliser currency’ 
to regress against. The currency should be unrelated to the currency under investigation. Something 

 
10 Listed in order: Recurrent Neural Network, Gated Recurrent Unit, Long short-term memory, 
Attention Mechanism, Differentiable Neural Computer, Byte-net, Fairseq, Convolutional Neural Network. 
11 A difficulty found in artificial neural networks that may completely stop the neural network from training 
further. 
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like the Japanese yes (JPY) is a good candidate. From here on, one would use the price of the NOK and 
Brent as measured against JPY to identify whether the Norwegian currency is under or overvalued. I 
will use an elastic net regression as the machine learning technique. It is a good tool when 
multicollinearity is an issue.  

An elastic net is a regularised12 regression method that combines both L1 (Lasso) and L2 (Ridge) 
penalties13. The estimates from the elastic net method are defined by.   

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛⏟    
𝛽

(||𝑦 − 𝑋𝛽||
2
+ 𝜆2||𝛽||

2
+ 𝜆1||𝐵||1) 

The loss function becomes strongly convex as a result of the quadratic penalty term therefore 
providing a unique minimum.  Now that the predictors are in place, one has to set up a pricing signal; 
one sigma two-sided is the common practice in arbitrage. We short if it spikes above the upper 
threshold and long on the lower threshold. The stop-loss will be set at two standard deviations. At 
that point, one can expect the interpretation of the underlying model to be wrong and therefore 
choose to exit the position.  

The elastic net has also usefully been applied in portfolio optimisation. Here, I have applied the two 
other well-known regularised linear models to portfolio optimisation.  

Resources: 

Data, Code 

 

Supervised Learning vs Reinforcement Learning  

The general pipeline for supervised machine learning trading involves the acquisition of data, 
processing of data, prediction, policy development, backtesting, parameter optimization, live paper 
simulation and finally trading of the strategy. The basic supervised learning task involves some form 
of price prediction. This includes regressors that predict the price level and classifiers that predict price 
direction and magnitude in predefined classifications for future time steps. Supervised machine 
learning models, especially neural networks, can keep up with changing market regimes as long as it 
is able to do online training1. The reason supervised learning processes tend to fail is because the 
iterative steps from ML prediction through to policy development, backtesting and parameter 
optimization are fragile, slow and prone to error. A further issue is that the performance simulation 
turns up too late in the game after much hard work has been done. Also, the policy does not develop 
‘intelligently’ with the machine learning model. 

The benefit of reinforcement learning algorithms is that the final objective function can be the 
realised/unrealised profit and loss, but also values like the Sharpe Ratio, maximum drawdown, and 
value at risk measures. Reinforcement learning only has four or so steps as opposed to the seven or 
eight of supervised learning. RL allows for end-to-end optimization on what maximises rewards. The 
RL algorithm directly learns a policy. RL has to take an action in an interactive environment. Compared 
to supervised learning which answers the question, "will the asset increase in price tomorrow?"; 
reinforcement learning answers the question, "should I buy the asset today?". The reinforcement 
learning algorithm is therefore already packaged as a trading strategy. This does not mean that it is 

 
12 Regularisation is any method that decreases the complexity of the model with the hope of improving its out 
of sample performance.  
13 The biggest difference between L1 and L2 is that L1's penalty is equal to the absolute value of the coefficient 
and L2's penalty is equal to the square of the magnitude; as a result, L1 can eliminate coefficients and L2 can 
only shrink coefficients without eliminating them. 
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necessarily hard to create a trading strategy out of a supervised learning task, for example, one can 
simply buy all assets that are predicted to increase in price tomorrow.  

Therefore, the reinforcement learning process draws on a larger process of automation. Similar to 
supervised strategy development, you still have to ensure that the model works, here instead of 
backtesting you use a simulated environment or paper trading. Remember that the focus should 
remain on out-of-sample performance at the end of the day, so be sure to deflate your performance 
metrics appropriately to control for multiple-testing. In a nutshell, RL comprises data analysis, agents 
training in a simulated environment, paper trading, and then finally live trading. In each of the last 
three steps the agent gets exposed to an environment. The simplest RL approach is a discrete action 
space with three actions, buy, hold, and sell. Unlike supervised models, reinforcement models specify 
an action as opposed to a prediction, however the decision masks an underlying prediction.  

So, if RL provides all these miraculous benefits, why is it barely used in industry. Well even though RL 
can lead to a great strategy in fewer steps with less human involvement, it takes longer to train and is 
very computationally intensive. RL needs a lot of data, even more so than supervised machine 
learning. It can also be expensive to test if you can’t reconstruct a good simulated environment. In 
finance this is mostly not a big issue, but this does become an issue when accurate environment 
feedback is necessary; in which case you might have to revert to the real environment when the 
simulated environment won’t cut it; in which case it can become very expensive. Lastly, the bigger the 
action space the harder it is to optimise an RL agents14. 

It is likely that supervised learning would still rule the pack in the foreseeable future. Supervised 
learning is already quite flexible, and we should expect to see a lot of innovations to bring the 
experience of developing strategies closer to that of reinforcement learning without forsaking the 
benefits of supervised learning. For example, researchers in SL have for a long time looked at 
embedding policy decisions into SL algorithms. Researchers in finance have also written about creating 
models that predict the best position sizes and entry and exit points (de Prado, 2018). Bringing the 
trading policy and rules closer to the ML model and closer to a form of automated intelligence.  

Let us consider a few more disadvantages of reinforcement learning. First, RL’s convergence to an 
optimal value is not guaranteed; the famous Bellman update can only guarantee the optimal value if 
every state is visited an infinite number of times and every action is tried an infinite amount of times 
within each state, so essentially never. You of course don’t need a truly optimal value; approximate 
optimality is fine. The big issue is that the sample size needed to obtain a good level of approximate 
optimality increases with the size of the state and action space. Further, without any assumptions 
there is no better way than to explore the space randomly, so progress at first is small and slow. 
Continuous states and actions are a serious problem; how are we supposed to visit an infinite number 
of states, an infinite number of times for an infinite number of continuous values with small and slow-
time steps? 

Some of the best approximations can only be done through the generalised nature of supervised 
learning. Generalisation can also be adopted in RL using function approximation as opposed to storing 
infinite values in an infinitely large table. It is worth nothing that this function approximation is still 
orders of magnitude harder than normal supervised learning problems, the reason being that you start 
the model off with no data, and as you collect data the action value changes and the ground truth 
labels also remain unfixed; a point previously labelled as good, might look bad in the longer run. To 
get closer to the true function, the agent has to keep exploring. This exploration in uncertain dynamics 
means that RL is way more sensitive to hyper-parameters and random seeds than SL as it does not 
train on a fixed data set and is dependent on network output, exploration mechanism, and 
environment randomness. Thus, the same run can produce different results. But do notice how great 

 
14 Not to mention the ridiculously slow optimization concerning for continuous as opposed to discrete action 
space. 
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it is that you are never given any samples from the ‘true’ target function, yet you are able to learn by 
optimising on a goal, that is why RL is so popular.  

I simultaneously expect to see a lot of improvement on the RL trading front, so that RL adopts the 
advantages of SL trading methods while not forgoing its own strengths. Conceptually RL offers a kind 
of paradigm shift where we are not overtly focused on predictive power, which is an auxiliary task, 
but rather the optimization of actions which is and has always been the primary goal. SL and RL 
algorithms indirectly pick up on well-known trading strategies without having to predefine and identify 
them. For example, the gradient step that leads the machine agent to buy more of what did the best 
yesterday are indirectly creating a momentum investing strategy. We can expect machine learning to 
become part of the toolkit of all asset managers in the future. 

Around 40 years ago Richard Dennis and William Eckhardt put systematic trend following systems on 
a roll, 15 years later statistical arbitrage made its way onto the scene, 10 years later high frequency 
trading started to stick its head out, in the meantime, machine learning tools was introduced to make 
statistical arbitrage much easier and more accurate. Machine learning today, among other things, 

assist investment managers to refine the accuracy of their predictions —by using supervised learning, 

improve the quality of their decisions —by using reinforcement learning, and enhance their problem 

discovery skills—by using unsupervised learning.  

Technological adoption within portfolio management moves fast and over the decades we have seen 
technologies come and go. It is likely that this cycle in quantitative finance will persist and that it also 
applies to machine learning in asset management, with one caveat, machine learning is also practically 
revolutionary, instead of just maximising alpha it also minimises overheard costs. Machine learning is 
already having large economic effects on many financial domains and it is poised to grow further. 
Advanced machine learning models present myriad advantages in flexibility, efficiency, and enhanced 
prediction quality. 

In this part of the article we have paid special attention to how machine learning can be used to 
improve various types of trading strategies. We started by identifying important components to asset 
management in the context of machine learning, one of which is portfolio construction, which itself 
was divided into trading and weight optimization sections. The trading strategies were classified 
according their respective machine learning frameworks, i.e., reinforcement, supervised and 
unsupervised learning. The article finished with a section explaining the difference between 
reinforcement learning and supervised learning, both conceptually and in relation to their respective 
advantages and disadvantages. The next article in this series will be on weight optimization strategies.  
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Weight Optimisation 

In recent years we have seen a trend towards online or dynamic portfolio asset allocation methods, 
clustering techniques, and methods that combine metadata on financial assets to help decide on the 
final weighting. Trading strategies and weight optimization methods can generally be considered as 
part of an integrated system. Trading strategies here is the use of perceived signals to execute trades 
and weight optimization the optimal weight allocation of active and passive strategies.   

Strong parallels can be drawn between weight optimization in machine learning and weight 
optimization in portfolio management. When working with neural networks, we must often choose 
which optimization algorithm would produce faster and better updates for the network's weight and 
bias parameters. This is needed for the internal nodes to learn the optimal relationship in data to 
minimize a pre-specified loss function. Researchers end up testing the performance of various 
optimizers like Gradient Descent, Stochastic Gradient Descent (SGD), AdaGrad, RMSProp and Adam 
on their dataset. In the process, they might come to conclude that nothing really works that well. After 
some tinkering, a researcher might add a momentum component to SGD in order to curb the high 
variance oscillation that makes standard SGD hard to converge. The next researcher might come along 
and see momentum as a problem when it ceases to stop as it reaches a local minimum. In response, 
the researcher could suggest a slope jump out of momentum as a reasonable correction15.  

A development out of this constant tinkering was Adam (2014) a method that performs best by 
combining the best properties of AdaGrad and RMSProp algorithms for a solution that can handle 
sparse gradients on noisy problems. In a similar spirit, we have seen portfolio optimization move from 
Markowitz's mean-variance portfolio using historical returns to dynamic models that use state of the 
art reinforcement learning techniques. This process is not over, in both fields, new methods are 
brought to light on a frequent basis. Similar to machine learning the optimal weighting strategy can 
and should be tested on validation data, in our parlance, backtests. We want to make sure that our 
data drives our optimization choices.  

 

SUPERVISED LEARNING 

 

Supervised learning (SL) techniques learn the relationship between independent attributes and a 
designated dependent attribute. SL refers to the mathematical structure describing how to make a 
prediction 𝒚𝒊 given 𝒙𝒊. Instead of learning from the environment like RL, SL methods learn the 
relationships in data. All supervised learning tasks are divided into classification or regression tasks. 
Classification models are used to predict discrete responses (e.g., Binary 1, 0; Multi-class 1, 2, 3). 
Regression is used for predicting continuous responses. (e.g., 3.5%, 35 times, $35,000). In portfolio 
weight optimization we are generally presented with a continuous response problem.  

 

Deep Portfolio  

 

A useful deep learning technique for finance is autoencoders. It is a learning process to train the 
architecture to replicate X itself, namely X = Y via a bottleneck structure. An autoencoder can create 
a more cost-effective representation of X. Autoencoding is an unsupervised learning method as there 
is no target to predict. However, the low dimensional encoding is used as an input to a supervised 
learning method to 'calibrate' and map the inputs to the desired target. The auto-encoder 

 
15 Nesterov Accelerated Gradient 
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demonstrates that in deep learning, it is not necessary to model the variance-covariance matrix 
explicitly as the model is already in predictive form. This portfolio optimization process follows four 
steps being (1) autoencoding, (2) calibrating, (3) validating, and (4) verifying. This method has been 
popularised by Heaton, Polson, and Witte (2017). 

 

(1) Autoencoding: find the market-cap, denoted by FW
m(X), that solves the regularisation problem 

min
W
||X −  FW

m(X)||
2

2
 subject to ||W|| ≤  Lm 

 

For appropriately chosen FW
m, this autoencodes X with itself and creates a more information-efficient 

representation of X.  

 

(2) Calibrating: for a desired target Y, find the portfolio-map, denoted by FW
p (X), that solves the 

regularisation problem 

min
W
||Y −  FW

P (X)||
2

2
 subject to ||W|| ≤  LP 

 

This creates a non-linear portfolio from X for the approximation of objective Y. 

 

(3) Validating: find Lm and LP to suitably balance the trade-off between the two errors 

 

εm= ||X̂ −  FWm

m (X̂)||
2

2
 and εP = ||Ŷ −  FWP

P (X̂)||
2

2
 

 

Where Wm and Wp are the solutions to the validation and verification step 

 

(4) Verifying: choose market-cap Fm and portfolio-map Fp such that the validation step above is 
satisfactory.  

 

Resources: 

Data, Code 

 

Linear Regression 

We can also apply linear models to the problem of finding optimal portfolios (Britten‐Jones, 1999). 
There is a deep connection between fitting linear models and portfolio optimization. The normal 

equation is θ̂ = (X′X)−1X′y. Note, in statistics or econometrics it is more common to see β (beta) 
instead of θ (theta). The normal equation makes sense if you do want a linear model and the number 
of explanatory variables (features) is not too big (e.g., < 100k); perfect for a small universe of stocks.  

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1bJcUZbrZ8HFXs-cd0vGHeMop16Vf3n23
https://drive.google.com/open?id=1-hOEAiJqaNTUYIyamj26ZvHJNZq9XV09


 

It is not necessary to use the normal equation; one can also solve for the best coefficients using 
numerical search such as gradient descent. With this portfolio optimization method, regularisation 
becomes a critical tool to improve out-of-sample performance. The tested regularisation methods 
include l2-norm (Ridge Regression), L1-norm (LASSO), and a combination of L1 and L2 norms (Elastic 
Net Regression). Regularisation effectively helps one to manage the variance-bias trade-off. Britten-
Jones (1999) demonstrates a close equivalence between Markowitz portfolio optimization and OLS 
regression.  

 

Specifically, regress the excess returns of 𝑁 stocks on a constant = 1 without an intercept. Collect the 

coefficients on each of the stocks in θ. Rescale θ so that the sum of the elements in θ is 1. (θ∗ =
θ

1Tθ
).  

The rescaled coefficients are the Markowitz optimal portfolio weights. As a result, any ML approach 
that yields coefficients for a linear model can be reinterpreted as a portfolio optimization approach; 
e.g., Ridge regression → Tikhonov regularised optimal portfolio.  

 

Resources: 

Code, Paper 

 

Further please see this for an article I wish I wrote, for a few wise words on portfolio optimisation.  

 

UNSUPERVISED LEARNING 

 

Unlike supervised learning which finds patterns using both input data and output data, unsupervised 

learning methods finds patterns using only input data. An unsupervised learning framework is useful 

when researchers are not quite sure what to look for. It is often used for the exploratory analysis of 

raw data and problem discovery purposes. Most unsupervised learning techniques take the form of 

dimensionality reduction or cluster analysis where you group data items that have some measure of 

similarity based on characteristic values.  

 

Two of the most important techniques are K-means clustering and Principal Component Analysis 

(PCA). The only requirement to be called an unsupervised learning strategy is to learn a new feature 

space that captures the characteristics of the original space by maximising some objective function16. 

PCA attempts to reduce the number of features while preserving the variance, whereas clustering 

reduces the number of data-points by summarising them according to their mean expectations. 

However, those clusters assignments can also be used to label each data point with its assigned 

cluster, leading to a dimensionality reduction towards only one feature. K-mean and PCA in some 

sense maximise a similar objective function with K-means having an additional categorical constraint.  

 
16 Inherent to the PCA is the maximisation of variance through a simple linear algebra operation by taking the 
eigenvectors of a covariance matrix of features. 
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PCA   

Principal Component Analysis (PCA) and clustering techniques are used to build classes of similar 
assets. The steps here involve integrated portfolio selection and risk estimation to optimise the 

portfolio. Let Y = (Y1, … , Yn)
T denote an n-dimensional random vector with variance-covariance 

matrix, Σ . The goal of PCA is to construct linear combinations  Pi =  ∑ Yjn
j=1Wij

,  for i = 1,…  n in such 

a way that the Pi‘s are orthogonal so that Σ[PiPj] = 0 for i ≠  j so that the Pi‘s are ordered to explain 

the largest percentage of the total variability in the system.  

 

Each Pi explains the most significant percentage of total variability in the system that has not already 
been explained by Pi, … , Pi − 1. Using various selection techniques, you can identify an optimum level 
of these components and apply it to a universe of stocks. This is not a complicated method, but it is 
very powerful and can be used as a mediating step in various trading strategies, if not the final 
allocation decision-making. In the code notebook, there is additional experimentation to compare this 
technique with hierarchical clustering methods.  

 

Resource: 

Code 

 

HRP 

The problem, as stated by De Prado (2016) is that the Mean-Variance (MV) portfolios are optimal in-
sample (training set) but perform poorly out of sample (test set). One way to deal with it is to drop 
forecasts altogether, like for example, risk party (RP). The problem is that both RP and MV require the 
inversion of a positive-definite covariance matrix. A new method is therefore suggested to overcome 
the matrix inversion and forecast issue, called hierarchical risk parity (HRP).  

 

HRP works by grouping similar investments into clusters based on a distance metric; the covariance 
matrix’s rows and columns also are reorganised so that the largest values lie along the diagonal; lastly, 
the allocations are split through recursive bisections of the reordered covariance matrix.  

 

One starts by defining a distance measure between investments from zero and one, di,j , after which 

you cluster the pair of columns (i∗, j∗) together such that (i∗, j∗)argmin(I,j) = {d̀i,j} and i  ≠ j. The next 

step is to update {d̀i,j} with the new cluster and apply steps 3-4 recursively until all N-1 clusters are 

formed.  

 

We now place correlated investments close together and uncorrelated investments further apart and 
carry out a top-down allocation by assigning unit weights to all items by recursively bisecting a list of 
items by computing the variance and the split factor and rescaling the allocations; we iterate this 
process until full allocation is achieved. In the code, I have included an implementation using Robert 
Martin's PyPortfolioOpt17 and an implementation of Chapter 16 in Advances in Financial Machine 

 
17 https://github.com/robertmartin8/PyPortfolioOpt 
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Learning (De Prado, 2018) by Hudson & Thames18, a buy-side open-source research unit headed by 
Jacques Joubert.   

 

Resources: 

Data, Code, Code 2 

 

Network Graph 

Given 𝑁 assets in a portfolio, we have to identify the weights 𝑤𝑖 , (∑ 𝑤𝑖
𝑁
𝑖=1 = 1) so that highly 

correlated assets obtain lower relative weights. To do this we can use a weighted graph that is an 

ordered tuple, 𝐺 = (𝑉,  𝐸,  𝑊), where 𝑉 is a set of vertices (or nodes), 𝐸 is a set of pairwise 

relationships (the edges) between the vertices, and 𝑊 is a set of numerical values assigned to each 

edge. A useful representation of 𝐺 is the adjacency matrix.  

 

𝐴𝑖𝑗 = {
1,      𝑖𝑓 𝑖 𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑗
0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Here the pairwise relations are expressed as the 𝑖𝑗 entries of an 𝑁  ×  𝑁 matrix where 𝑁 is the number 

of nodes. The strategy is then to transform the historical pricing data into a graph with edges weighted 

by the correlation between each stock. We can then use graph centrality measures and graph 

algorithms to obtain the desired allocation weights. In five steps, we do the following: 

 

1. Compute the distance correlation matrix 𝜌𝐷(𝑋𝑖 , 𝑋𝑗) for the Open, High, Low, Close and Return 

time series. 

2. Use the NetworkX19 module to transform each distance correlation matrix into a weighted 

graph. 

3. Adopt a winner-take-all method and remove edges with correlations below a threshold value 

of 𝜌𝑐 = 0.325 (adjust this threshold value if the graph disconnects) 

 

𝐶𝑜𝑟𝑖𝑗 = {
𝜌𝐷(𝑋𝑖 , 𝑋𝑗) ,      𝜌 ≥ 𝜌𝑐

      0,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

4. Inspect the distribution of edges (the so-called degree distribution) for each network20. The 

degree of the ith vertex is given as,  

 
18 https://hudsonthames.org/ 
19 https://github.com/networkx/networkx 
20 The degree of a node is simply the number of connections it has to other nodes. 
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𝐷𝑒𝑔(𝑖) =∑𝐴𝑖𝑗

𝑁

𝑗=1

 

 

5. Finally build a master network by averaging over the edge weights of the Open, High, Low, 

Close, and Return networks and derive the asset weights from its structure.  

There are multiple variations available for constructing the network and obtaining the distance; a 

few different approaches are considered in the notebook. A really extensive analysis can be found 

in the attached code by Maya Benowitz a Quant at CarVal. 

Code 

 

Bayesian Sentiment 

Advances in sentiment mining techniques have led researchers in the 2010s to consider the use of 
public opinion for stock market prediction. Xing, Cambria, Malandri, and Vercellis (2018) have decided 
to do the same for asset allocation by accounting for public mood using an online Bayesian asset 
allocation model. This model straddles between a trading strategy and weight optimization and falls 
within the supervised learning section because of its use of two neural models to generate market 
views.  

 

To address the much-discussed limitations of the Markowitz model, Bayesian methods take additional 
information such as investor judgement and market fundamentals into account; a method once 
proposed by Black and Litterman (1990). The difference is that classical methods rely on financial 
experts and overlook public opinion and sentiment. A fair criticism of the Black and Litterman model 
is its subjective nature on market views; it leaves unanswered the question of how to assess these 
views. With the proposed method, public sentiment from the web can help researchers to formalise 
market views automatically. 

 

The BL model assumes that equilibrium returns are normally distributed 𝑟𝑒𝑞~𝑁(𝛱, 𝜏Σ) where Σ is the 

covariance matrix of asset returns and 𝜏 is an indicator of the confidence level of the CAPM estimation 
of 𝛱 the equilibrium risk premium of the market. The market views on the expected returns held by 
an investor agent are also normally distributed as 𝑟𝑣𝑖𝑒𝑤𝑠~ 𝑁(𝑄,𝛺). The posterior distribution of the 
portfolio returns that provide the views are therefore, also gaussian.  

 

With the distributions denoted as 𝑟𝐵𝐿~𝑁(�̅�, Σ̅), the vector of expected returns �̅� and the covariance 

matrix Σ̅ will be a function of the aforementioned variables.   

 

[�̅�, Σ̅] = 𝑓(𝜏, Σ, Ω, Π, 𝑄) 

 

The function can be induced by applying Bayes’ theorem on the probability density function of the 
posterior expected returns.  
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𝑝𝑑𝑓(μ̅) =
𝑝𝑑𝑓(μ̅|Π)𝑝𝑑𝑓(Π)

𝑝𝑑𝑓(Π|μ̅)
 

 

 

The optimised Bayesian portfolio weights now have a similar form to the Markowitz model by 
substituting the mean-variance version of Σ and 𝜇 with the new variables Σ̅ and �̅�.  

 

𝑤𝐵𝐿
∗ = (δΣ̅)−1μ̅ 

 

A time series of asset prices, trading volume, and public sentiment data is used to approximate optimal 
market views. The sentiment is computed from a range of social media platforms using NLP 
techniques. The standard deviation will be interpreted as the confidence of expected return of the 
portfolio, and a relative view would be described as taking the form “I have ω1 confidence that asset 
𝑥 will outperform asset 𝑦 by 𝑎%” while an absolute view will take the form “I have a 𝜔2 confidence 
that asset 𝑧 will outperform the market by 𝑏%”. As a result, a portfolio of 𝑛 assets and a set of 𝑘 views 
can be represented by three matrices 𝑃𝑘,𝑛 , 𝑄𝑘,1 and Ω𝑘,𝑘. Apart from performing slightly better than 

traditional methods, it also allows one to tell a nice Bayesian story. 

 

Resource: 

Code (still an unresolved issue) 

 

REINFORCEMENT LEARNING 

 

Reinforcement learning (RL) in finance comprises the use of an agent that learns how to take actions 
in an environment to maximise some notion of cumulative reward. We have an agent that exists in a 
predefined environment, the agent receives as input the current state 𝑆𝑡 and is asked to take an action 
𝐴𝑡  to receive a reward 𝑅𝑡+1, the information of which can be used to identify the next optimal action, 
𝐴𝑡+1 given the new state 𝑆𝑡+1. The final objective function can be the realised/unrealised profit and 
loss and even risk-adjusted performance measure like the Sharpe Ratio. Allocation decisions in finance 
are challenging to deal with because it is partially-observed, non-stationary, regime-dependent, and 
noisy. Standard models apply and recombine single period predictions using an optimiser, but in the 
real world, the actions could have long term actions that could be acted against by the environment. 
Reinforcement learning can help us to deal with some of these problems by taking a more holistic 
approach.  

 

Deep Determinist Policy Gradient (DDPG) 

 

Deep learning models could be used in reinforcement learning to solve high-dimensional problems. 
To deal with the continuous action space of portfolio weighting, we can use Google DeepMind's off-
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policy, and model-free algorithm called Deep Deterministic Policy Gradient (Lillicrap et al., 2015). 
Using this method, we do not have to discretize continuous action spaces which might lead to the 
curse of dimensionality and a loss of valuable information. The environment is derived from an OpenAI 
environment-class more can be found in their documentation21. This environment takes arguments 
trading cost and window size into account to approach a realistic setting.  

 

To start formalising the problem, we set the number of stocks to 𝑁. At time step 1 we are fully 
invested, the close/open relative price vector are defined as:  

 

𝑦𝑡 = [1,
𝑆1,𝑡,𝑐𝑙𝑜𝑠𝑒
𝑆1,𝑡,𝑜𝑝𝑒𝑛

,
𝑆2,𝑡,𝑐𝑙𝑜𝑠𝑒
𝑆2,𝑡,𝑜𝑝𝑒𝑛

, … ,
𝑆𝑁,𝑡,𝑐𝑙𝑜𝑠𝑒
𝑆𝑁,𝑡,𝑜𝑝𝑒𝑛

] 

 

The portfolio weight vector is then defined as: 

 

𝑤𝑡 = [𝑤𝑜,𝑡 ,𝑤1,𝑡 ,… ,𝑤𝑁,𝑡] 

 

Here 𝑤𝑖,𝑡 is the fraction of investment in stock 𝑖 at time stamp 𝑡. Note  𝑤𝑜,𝑡 represents the fraction of 
cash maintained. The profit after timestamp T is: 

 

𝑝𝑇 =∏𝑦𝑡

𝑇

𝑡=1

⋅ 𝑤𝑡−1 

 

Once we consider the trading cost factor of 𝜇 then the trading cost at each time stamp is: 

 

𝜇𝑡 =  𝜇∑|
𝑦𝑡⊙𝑤𝑡−1
𝑦𝑡 ⋅ 𝑤𝑡−1

− 𝑤𝑡| 

 

 

where ⊙ is the element-wise product. The profit can then be formulated as: 

 

𝑝𝑇 =∏(1 − 𝜇𝑡)𝑦𝑡 ⋅ 𝑤𝑡−1

𝑇

𝑡=1

 

 

 
21 https://gym.openai.com/docs/ 
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Now we have dealt with the problem formulation we have to formulate the Markov Decision Process, 

we set the state 𝑜𝑡 as the fixed window 𝑊 price history 𝑆𝑖,𝑡⃗⃗ ⃗⃗  ⃗ of all the assets 𝑁: 

 

𝑜𝑡 = [𝑆1,𝑡⃗⃗ ⃗⃗ ⃗⃗ , 𝑆2,𝑡⃗⃗ ⃗⃗ ⃗⃗  , … , 𝑆𝑁,𝑡⃗⃗ ⃗⃗ ⃗⃗  ⃗  ] 

 

𝑆𝑖,𝑡⃗⃗ ⃗⃗  ⃗ =

[
 
 
 
𝑆𝑖,𝑡−𝑊
𝑆𝑖,𝑡−𝑊+1

⋮
𝑆𝑖,𝑡−𝑊 − 1]

 
 
 
 

 

Moreover, the action 𝑎𝑡 is merely the portfolio weight vector as previously defined 𝑤𝑡. We, therefore, 
want to train a policy network: 𝜋𝜃(𝑎𝑡 , 𝑜𝑡). The underlying evolution and transition of state are then 
determined by the market and we can simply obtain the observation of the states. The reward is 
specified as the log-profit at each time step, log 𝑝𝑇, which avoids the sparsity of rewards problem. 
Recall with the DDPG algorithm we want to learn the policy network 𝜋𝜃(𝑎𝑡 , 𝑜𝑡) with a continuous 
action space reinforcement algorithm. The Actor-Network is set as the same as the policy network; 
the Critic-Network is a linear combination of Actor-Network structure of the state and action; the 
exploration noise is set by the Ornstein-Uhlenbeck process with zero mean, 0.3 sigma, and 0.15 
theta22.  

 

The specific implementation in the code notebook looks at 15 stocks in for the first ten months in 2018 
with data in minute format with open, close, high, low and volume variables. This method is adapted 
from Jiang, Xu, and Liang's work published on ArXiv (2017). The action space contains a cash position, 
long positions and short positions. The algorithm is hardcoded to only act every 7 minutes. Note that 
reinforcement models can be very unstable and are generally hard to converge; and when they do 
converge the generally overfit. At this stage, without any further innovation, reinforcement learning 
models have to be implemented with great care.   

 

Code 

 

SUMMARY 

 

There are several ways in which modern machine learning innovations can be used to help portfolio 
managers optimally allocate assets. Machine learning is poised to partially replace traditionally rigid 
allocation methods. This paper divides these methods into supervised-, unsupervised-, and 
reinforcement learning frameworks. Within the supervised learning framework, three different 
techniques were considered; first, a more traditional linear approach using OLS, Ridge, and Lasso 
regressions; second, a non-linear deep learning approach using autoencoders; and lastly a Bayesian 
sentiment method. The paper further identified three unsupervised methods using principal 
component analysis, hierarchical clustering analysis, and network graphs. The paper finished with a 

 
22 For more information on this distinction see the original DeepMind paper referenced at the start. 
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deep reinforcement learning approach to portfolio weight optimization. As with the first paper, I 
expect to see a lot more growth in reinforcement learning methods in the coming years; to paraphrase 
Vladimir Vapkin the inventor of the support-vector machine method – one should avoid solving 
difficult intermediate problems when what you truly want to solve is a target problem. 

 

OTHER 

 

Online Portfolio Selection (OLPS) 

Online Portfolio Selection (OLPS) sequentially selects a portfolio over a set of assets in order to achieve 
a certain target such as maximising cumulative wealth. In this analysis, we can use ETFs to avoid 
survivorship bias. State of the art online portfolio selection algorithms can be divided into five 
classifications, namely, Benchmarks, Follow-the-Winner, Follow-the-Loser, Pattern-Matching, and 
Meta-Learning Algorithms. The following paper and book gives a good summary of the different 
strategies and their historical performance. In this notebook, no meta-learners have been 
implemented. Meta-learners are interesting in that they define several base experts that are 
combined through some mechanism to form the final portfolio. It might be fruitful to pay more 
attention to this in the future.   

Resources: 

Code and Data 

 

GANVaR 

Credit: Hamaad Shah 

By using GAN (specifically BiGAN) on financial data, we do not have to explicitly specify the distribution 
(e.g., multidimensional Gaussian distribution). This model can be used to estimate portfolio risk 
measures like the Value-at-Risk (VaR). GAN allows us to maximise the likelihood of complex 
distributions, this might be key for financial data know to be complex and highly non-linear. This 
method is compared against traditional method. The math is presented inside the notebook.  

Resources: 

Code 

 

Execution 

Many sell-side firms have experimented with algorithms that use reinforcement learning for 
execution. These algorithms typically consist of a scheduler that makes macro decisions across a time 
horizon of hours, and a limit order module that makes micro decisions on smaller time scales.  The 
limit order modules is based on a reinforcement learning model. First, identify your current state or 
regime and then take micro actions. Within a stated horizon, the limit order module seeks to sell and 
buy securities with for example the aim of minimising slippage.  

A reinforcement model needs to have appropriate data. Current implementations include market 
size/price data (e.g. spreads), execution data (e.g. filled quantity and realized p.o.v. rate), market 
signals (e.g. medium-frequency like momentum and high-frequency like order flow) and model 
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estimates (e.g. volume/volatility prediction and fill probability estimate). In addition, as mentioned 
before, the model operates under the constraints of the quantity, time horizon, limit price and other 
market conditions. The reinforcement model decides to either place an aggressive cross the spread or 
passive order at each price level of the order book. An inherent problem is that rewards attributable 
to a step can only be discerned at the end of all transaction, hence the need for reinforcement 
learning. In most examples, good success can be achieved by learning the functional map via a neural 
network with one hidden layer. The point is to learn the value function within the framework of 
reinforcement learning.  

 

Validation Techniques and Data Processing 

ML Conceptual Map 

Machine learning techniques can largely be broken into the data processing, supervised learning, 
validation techniques, unsupervised learning and reinforcement learning. Every machine learning 
solution is constructed out of a mixture of these components. In the short-term, I see a lot of scope 
for innovation w.r.t. unstructured data processing techniques and in the long run a lot of room for 
improvement in the reinforcement learning space. In this section, I will look at some of these 
components through an asset management lens by pulling some additional information from the 
previous trading strategies.   

 

1. Data Processing 
a. Natural Language Processing 

i. Text Extraction 
ii. Word Embeddings 

iii. Topic Modelling 
b. Image and Voice Recognition 
c. Feature Generation 

2. Supervised Learning 
a. Algorithms 

i. Gradient Boosting 
1. LightGBM 
2. XGBoost 
3. Constraint 

ii. Neural Networks 
1. CNN 
2. RNN 
3. GAN 

b. Tasks 
i. Regression 

ii. Classification 
c. Analysis 

i. Cross Sectional 
ii. Time Series 

3. Validation Techniques 
a. Visual Exploration 
b. Table Exploration 

4. Unsupervised Learning 
a. Traditional 

i. Dimensionality Reduction 
ii. Clustering   

iii. Anomaly Detection 
iv. Group Segmentation 

b. Neural and Deep Learning 
i. Autoencoders 

ii. Boltzmann Machines 
iii. Deep Belief Networks 
iv. Generative Adversarial 

Networks 
c. Semisupervised Learning 

i. Mixture Models and EM 
ii. Co-Training 

iii. Graph Based 
iv. Humans 

5. Reinforcement Learning 
a. Markov Decision Process and 

Dynamic Programming 
b. Monte Carlo Methods 
c. Temporal Difference Learning 
d. Multi-armed bandit 
e. Deep (Recurrent) Q Network 
f. Actor Critic Network 
g. Inverse Reinforcement Learning 
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c. Feature Importance 
d. Feature Selection 
e. Cross Validation 

 

 

 

 

Data Processing: 

Feature Cleaning 

There are a few cleaning operations you want to do before starting a prediction task. This includes 
dropping columns that are mostly empty, dropping constant columns, dropping quasi-constant 
columns, dropping columns that are overly correlated (only in prediction task, not in predictor analysis 
tasks), dropping rows that are mostly empty across columns, and identifying and replacing outliers (if 
needed). For linear and neural network models, it is often the best strategies to clip outliers rather 
than dropping the samples.  

You can fill empty values with column median or reconstructed values. I would normally set the 
missing threshold to 0.9 and the correlation threshold to 0.99. I would only drop correlated features 
to improve prediction performance; this should not be done when you want to perform a predictor 
analyses as you risk removing extremely important features from the analysis. With GBM models, you 
can also fill null values with out of range values (-999, -1 etc.), only do this after feature 
transformations, otherwise these strange values might be caught up in mapping operations and on a 
further note do not do this for neural networks. Before you remove null values, you can also create 
an extra binary column to define whether a null value has appeared, making sure that we do not lose 
information if the column was not missing at random. In time series always do back filling instead of 
forward filling when working with features, and although I recommend dropping 

Resources: 

Code 

 

Feature Generation 

Signal Processing 

Financial data is fundamentally noisy, making data processing one of the most crucial steps. It cannot 
be neglected and is essential for all learning problems. The data processing starts at the point of data 
selection. Something as simple as knowing to select ETF’s as opposed to reconstructed indexes can 
significantly improve the generalised accuracy of your model as a result of removing survival bias.  

Similar to statistics, it’s best to work with relatively invariant processes such as the returns on price, 
and the changes in yield and volatility. The mean variance and auto-correlation should be near 
constant over time. Researchers like Charles Tapiero (NYU) have looked into fractional finance, which 
consists of fractional derivatives of price series. Derivatives on the price of securities can be optimised 
to balance the need of stationary series with the need of predictability.  

Marcos Lopez de Prado have phrased this question differently as “what is the minimum amount of 
differentiation that makes a price series stationary while preserving as much memory as possible”. To 
me this can only be resolved in one way, and that is by experiment, I personally do not see the need 
for stationarity to persist when a level of non-stationarity works in your favour. To make data ‘more’ 
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stationary, one can therefore look at differentiation and fractional differentiation methods. To 
generate more fundamental and market data, one can make use of GAN while considering the dollar 
additivity constraint. I will release some notebooks touching on these subjects in the future.   

To deal with some of these issues one can decompose a time-series into the trend, seasonal and 
residual components. These components can be separately included into a machine learning model. 
An ARIMA model itself can be included as an input to a model. For example, in time series 
classification, we need not stop with the ARIMA model, I have successfully included instance based 
models like Dynamic time warping (DTW), Weighted DTW, Time Warp Edit Distance (TWED), Moving-
Split Merge (MPM) and derivatives DTW (DDTW) in my meta-model.  

 

Automated Engineering 

It is good practice to make use of automated feature engineering tools. “Having too many features is 
a better problem to have than having too few” – some wise sage. The automated tools that can be 
particularly helpful includes, TSFresh, Feature Tools, SHAP features and some others. GBM model 
specifically struggles to approximate multiplication and division, therefore adding these 
transformations explicitly can improve your model.  

 

Manual Engineering 

Categorical Encoding 

When a feature has high cardinality and is sparse, it is good practise to test the performance of the 
feature before clogging up your model. Another important consequence of including any feature is 
the knowledge of whether or not you would have access to the feature in the future. If you do not, it 
is unwise to include it in the present model. Also consider a cost-benefit of features, when features 
are too costly to obtain and do not provide much of a benefit, do not include it. Data acquisition has 
to be value driven.  

For neural network and linear models, when your dummies explode you can use sparse matrixes, 
which works by storing only non-zero elements to save memory. Most GBM models can also work 
with sparse matrixes directly. A good feature for neural networks is the interaction between 
categorical variables; this is not useful for GBMs. You can do numerous other transformations like 
Ranking, Quantization, Binning, Transformation and Mapping, Clustering and Data-time extraction. 

 

Preprocessing 

In the Preprocessing step, you have to normalise and or standardise your data. You also have to decide 
whether your target variable is normally distributed. If it is not, you can do a log transform or a square 
root transformation. Sometimes it is helpful to train a model on different preprocessing groupings and 
selecting the best among them. Data transformations including unsupervised feature creation should 
be separately done on train and test sets to avoid cross-contamination. Researchers often create a 
‘pipeline’ for this purpose to easily create the transformation for each set.  

 

Resources: 

Code 
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Feature Selection  

All machine learning models internally perform a sort of variable selection in the training process. 
LASSO regressions do this quite explicitly by zeroing out coefficients. Gradient Boosting Models 
(GBMs) will on the other hand ignore non-informative features for the splitting operation, as shown 
by the low importance score these features obtain. For GBMs, we can measure this importance 
measure because of the use of variables to split nodes. Each split will give us a measure of expected 
improvement, i.e., decease in the impurity of the node; and we can record these improvements over 
all nodes and all trees. I personally do not give much time to any of these measures, as they are mostly 
misleading. 

I do not perform any feature selection beyond the feature cleaning stage for prediction tasks; for 
predictor analysis tasks, I do however perform extensive feature selection. When I do feature selection 
for prediction tasks, it takes the following form. Using out of sample data, I would calculate the feature 
importance using permutation importance and SHAP values. I would then remove values so that the 
cumulative importance is 99% for both of these methods, which normally drops about 10% of the 
original features.  

In the age of deep learning, I would strongly advise against other feature selection methods. They are 
poor proxies of performance once ingested into a model. Many teams, including Google, use large 
models with a lot of data without bowing down to feature selection. In my personal experience with 
GBMs and NNs feature selection has become mostly redundant. In saying that sometimes feature 
selection has economic reasons behind it, e.g. which features can I remove while still maintaining 90% 
accuracy so that I can stop paying the expensive data provider? In addition, some features simply 
introduce noise that can hurt out of sample performance, in which case you can remove feature until 
you hit 99% of cumulative feature importance as described in the before mentioned paragraph.  

 

Validation 

Exploration 

Table Exploration, visual exploration  and two. 

 

Model Selection 

 

Table 3: XGBoost and Deep Learning Model Performance Comparison 

 Metrics XGBoost 
Model 

Deep Feed 
Forward 
Network 

Deep Convolutional 
Neural Network 

Logit Model 

ROC AUC Sore 0.9587 0.8444*** 0.9142*** 0.7092*** 

Accuracy Score 0.9755 0.9324 0.9518 0.6856 

False Positive Rate  0.0037 0.0666 0.0296 0.2296 

Average Log Likelihood 0.1414 0.5809 0.2996 1.1813 
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This table illustrates the performance of two deep learning models against the XGBoost Model. The Feed 
Forward Network is a deep learning network that does not circle back to previous layers. The Convolutional 
Neural Network is a biologically inspired variant of MLP, popularised by recent image classification studies. 
The best possible Logit model was established by choosing a selection of the best variables. Further results 
include the isolation of the 10 best predictor variables (using the Gini Index) in all models, this produced similar 
results to the above table both in extent and in rank. *p<.1 ** p<.05 *** p<.01. Significance levels are based 
on a two-tailed Z test to identify the statistically significant difference between all contender models and the 
best performing model, which is made possible due to the cross-validation process.  

 

 

XGBoost Model Comparison Using Different Inputs 

 Metrics All Data 50 Variables 
Model 

One Year Before 
Bankruptcy 

Two Years Before 
Bankruptcy 

ROC AUC Sore 0.9587 0.9408*** 0.9666** 0.9434*** 

Accuracy Score 0.9755 0.9700 0.9860 0.9837 

False Positive Rate 0.0037 0.0056 0.0010 0.0002 

Average Log Likelihood 0.1414 0.1795 0.1682 0.2206 

This table compares the performance of model that includes only 50 of the most predictive variables as inputs, 
a model that only includes bankruptcy observations one or two years before the filing. All statistical comparisons 
are made against the model called "All Data."  *p<.1 ** p<.05 *** p<.01. Significance levels are based on a two-
tailed Z test. 

 

Metric Validation 

For time series validation, I generally benchmark against the lower of (Theta+ARIMA +ETS)/3 or 
ARIMA. For many examples you would struggle to beat this benchmark. Some more time-series 
notebooks can be found here (rough). The ARIMA model can also be automated.  

 

Regression Example (Earnings Prediction): 

From left to right, the above models relate to the following, as presented in the equations in the study, 
𝑝 , 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 , 𝐸𝑝𝑠𝐸𝑠𝑡4𝑄, 𝐸𝑝𝑠𝐸𝑠𝑡4𝑌𝑖𝑡 , 𝐸𝑝𝑠𝐸𝑠𝑡𝑅𝑊𝑖𝑡 , 𝐸𝑝𝑠𝐸𝑠𝑡𝐿𝑄𝑖𝑡  and 𝐴𝑅𝐼𝑀𝐴. 
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Aggregated MAE Across All Tests  

This figure reports the aggregated MAE tests over multiple test periods. The four periods and associated patterns 
at the bottom of the graph. The above chart presents both an ML model that does incorporate analysts' forecasts 
(ML), and a model that does not incorporate analyst forecasts (ML Ex-forecast) It is, therefore, unlike the time-
series models that only use past actual EPS values. Further, using an OLS regression the Analyst Forecast has 
been bias corrected (Analyst Unbiased).  

 

 

Classification Example: 

For classification, you can use a random confusion matrix. The evaluation of a successful model 

can start with an accuracy measure. The accuracy can be defined as the percentage of correctly 
classified instances (observations) by the model. It is the number of correctly predicted surprises (true 
positives) and correctly predicted non-surprises (true negatives) in proportion to all predicted values. 
It incorporates all the classes into its measure (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), where TP, FN, FP 
and TN is the respective true positives, false negatives, false positives and true negatives values for all 
classes. The measure can otherwise be represented as follows:  𝑎𝑐𝑐(𝑦, �̂�) =

 
1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 1(
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0 �̂�𝑖 = 𝑦𝑖). 

Surprise Breakdown Random Guessing Confusion Matrix 

Random Confusion Matrix 
Random Guessing 

Marginal Sum of Actual 
Values Neutral Negative Positive 
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Neutral 89020 24590 55890 169500 

Negative 24590 6792 15439 46821 

Positive 55890 15439 35090 106419 
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Marginal Sum of Predictions 169500 46821 106419 322740 

This table is formed by 'randomly choosing the observations' by allocating the observations according to the 
underlying distribution. 

 

The multiclass ROC is a universal way to identify the performance of a classification model. The AUC 
(area under curve) score provides an integral based performance measure of the quality of the 
classifier. It is arguably the best single number machine learning researchers have in measuring the 
performance of a classifier.  The middle line is a line of random ordering. Therefore, the tighter the 
ROC-curves fit to the left corner of the plot, the better the performance. Two other measures included 
in the graph is a macro-average measure that equal weight to each class (category) and a micro-
average measure that looks at each observation. AUC values of 0.70 + is generally expected to show 
strong effects. The ROC test is the first indication that the model performance is significantly different 
from null. In subsequent tables. 

 

Multiclass Receiver Operating Characteristic (ROC) for a 15%+ Surprises Strategy 

 

 

This figure reports the ROC and the associated area under the curve (AUC). The ROC is measured for three 
different classes, class 0 is the negative surprise class, 1 is the neutral class and 2 is the positive surprise class. 
The macro-average measure is equal weighted to each class and a micro-average measure looks at each 
observation weight. The random ordering or luck line is plotted diagonally through the chart. The associated 
curves are associated with a good classification model.  

 

 

Luck 
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Healthy and Bankrupt Confusion Matrix. 

Aggregated Health and Bankrupt 
Firms Matrix 

Predicted 
Sample Proportion 

Healthy Bankrupt 

A
ct

u
al

 Healthy 29041 - TN 116 - FP 0.96 

Bankrupt 805 - FN 258 - TP 0.03 

Precision 0.97 0.69 30220 

Improvement 0.01 0.66 - 

This bankruptcy prediction task solves for a binary classification problem that produces a 2×2 matrix. The 
columns of the matrix represent the predicted values, and the rows represent the actual values for bankrupt 
and healthy firm predictions. In the cross-section of the rows and columns, we have the True Positive (TP), 
False Negative (FN - type II error), False Positive (FP - type I error)), and True Negative (TN) values. The sample 
proportion on the far right is equal to all the actual observations of a certain classification divided by all the 
observations. The precision is calculated by dividing the true positives (Bankruptcies) with the sum of itself 
and the false negatives (Healthy). An example along the second column: 258/(116 + 258)  =  69%. The 
improvement is the percentage point improvement the prediction model has over a random choice 
benchmark.  

 

Random Guessing Confusion Matrix. 

Aggregated Health and Bankrupt 
Firms Matrix 

Random Guess Marginal Sum of 
Actual Values Healthy Bankrupt 

A
ct

u
al

 Healthy 28131 - TN 1026 - FP 29157 

Bankrupt 1026 - FN 37 - TP 1063 

Marginal Sum of Guesses 29157 1063 1063 

This table is formed by 'randomly choosing the observations' by allocating the observations according to the 

underlying distribution, as presented by Sample Proportion in Error! Reference source not found.. 

 

Cross Validation 

There is no reason why you cannot test which validation process leads to the best out-of-sample 
performance. Sometimes you can be surprised by the results. Rolling, similar to TSF, is not commonly 
used in ML literature, but it perfect for time series prediction. It always outperforms train-test division 
unless randomness intervenes.  

 

Table 4: Model Comparison Using Different Performance Validation Procedures 

 

 Metrics  (1) 

All Data 

 (2) 

Time-Split  

  (3) 

K-Fold (KF) 

  (4) 95% 
Confidence 
(+/-) 
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(TS) Time Split 
Fold (TSF) 

ROC AUC Sore 0.9587 0.9655** 0.9467** 0.9570 0.0142 

Accuracy Score 0.9755 0.9837 0.9682 0.9712 0.0163 

False Positive Rate (p-value) 0.0037 0.0069 0.0028 0.0039 0.0015 

Average Log Likelihood 0.1414 0.0825 0.1301 0.1052 0.0707 

This table compares the performance of the best models that resulted from different out-of-sample 
performance tests. (1) The original "All Data" model allocates 60% of the observation to the training set, 15% to 
the development of validation test set and 25% to the test set. The 15% is used to measure and improve the 
performance of the model. The observations to each of the splits is randomly selected. (2) TS is a simple ordering 
of the observation in time series and the creation of longitudinal training - 60%, validation - 15% and test set 
splits -25%, this method ensures that there is no information leakage from the future observations. (3) KF is a 
randomised cross-sectional method that scrambles the observations and splits them into training and test sets 
and calculates the average metrics from 10 different iterations or folds. (4) TSF is the most robust method and 
has also led to the model with the best generalisable performance as evidenced by the battery of metrics - It is 
a longitudinal blocked form of performance-validation that suits this form of bankruptcy prediction, it uses the 
strengths of both (2) and (3).   All statistical comparisons are made against the model called "All Data."  *p<.1 ** 
p<.05 *** p<.01. Significance levels are based on a two-tailed Z test. 

 

Feature Value  

The following models have model-specific feature interpretability: linear regressions, logistic 
regressions, GLMs, GAMs, Decision Trees, Decision Rules, RuleFit, NBCs and KNNs. For more black-box 
models one can use model agnostic methods like partial dependence plots (PDPs), individual 
Conditional Expectation (ICEs), Accumulated Local Effects (ALEs), Feature Interactions, Global and 
Local Surrogates, and lastly Feature Importance measures.  

Feature importance measures can be model-specific or model-agnostic. The only methods that I trust, 
albeit cautiously, is Permutation Importance and SHAP Values. Both of these methods are model-
agnostic. I also recommend SHAP dependence plots as opposed to PDPs. However, PDPs and ICEs can 
be successfully used to identify feature and feature interaction behaviour when you are using GBMs 
and a gain measure. So start with SHAP values and Dependence plots and for additional values move 
into GBM’s with PDPs + ICEs.  

Per the above, the only feature importance measures worth studying are permutation methods. 
Permutation is the random shuffling of feature values to nullify a feature, which allows you to 
investigate how much worse a prediction model is performing without the feature. The first is a 
method known as Permutation Importance (PI) and the second SHAP values (SVs). For both of these 
methods, you can estimate significance scores. Compare to normal Shapley values, I prefer SHAP 
values because it returns sparse results with many of the shapley values estimated to be zero; this is 
especially useful in feature selection procedures.  

One of the disadvantages with SV is the compute which is O(2^n) order of magnitude. Generally, one 
wants to avoid algorithms with running times where n is an exponent. The SV can be interpreted as 
the contribution of a feature value to the difference between the actual prediction and the mean 
prediction. So, what is PI. It can be defined as the increase in the prediction error of the model after 
the feature’s values are permuted. Features’ PIs changes with each random shuffling. It is therefore 
good practice to repeat the permutations and develop a statistical significance score. Both of these 
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values can be used in regression and classification tasks, for regression one would typically look at 
accuracy score and for classification, one would typically look at the ROC (AUC) score.  

The benefit of SVs is that they provide local and global insight but this is at the expense of being slightly 
less interpretable. The disadvantage of PI is that it only provides global insight but on the other side 
are very factual and intuitive. These measures play complimentary roles in all my analyses. When you 
are investigating global feature importance look at PI, when you look at local feature importance, or 
and interested in interaction effects, individualised data points then use SVs. For feature selection 
only use training data, for predictor analysis and feature importance use both training and test data. 
Just a last word of warning, when features are correlated then the overall scores would be much lower 
as the remaining features pick up the slack. This is true for all permutations methods. I have devised 
a method to overcome this problem, called interpretive-features. 

When we collapse a feature's importance across all samples to a single number we are forced to 
decide what we want to measure. For example, is a feature with high effect on a small number of 
observations more important than a feature with a small effect on many observations? I think the 
answer to this depends on the application. With SHAP values you are able to investigate how the 
feature ‘acts’, this cannot be done with Permutation importance. To understand what is meant with 
SHAP values being local and individualised, consider the following. After you train your model and 
explain it on your training dataset to get a matrix of SHAP values, you can consider every single column 
as the importance of a feature across all samples. It will have both positive and negative values.  

One can do many extended statistical tests by having access to this data. For one, you might want to 
know if those values have a meaningful trend or are just driven by random noise. To evaluate this you 
can retrain your model on a bootstrap resample of your dataset and then explain it again on your 
original training data to get another matrix of SHAP values. If you take the dot product (or correlation) 
between two of the same columns in each matrix you will see how well the impacts of a feature in the 
first model agree with the impacts of that same feature in the other model. By repeating this multiple 
times you will get an estimate of the global stability of a feature. If the correlation is consistently 
greater than 0 then you have a stable feature. With additional bootstraps you can also build a global-
level importance interval for each feature and calculate the associate feature significance.  

A further neat attribute of Shapley values are their linearly additivity. As a result you can compare 
groups together by aggregating the scores. You might wonder how SHAP works, it works by permuting 
input data to assess the impact of each feature. Each feature’s contribution is averaged across all 
possible feature interactions.  This approach is based on the concept from game theory. Permutation 
importance does something similar, but only assess the global impact on the prediction, it is a 
traditional feature importance algorithms. All traditional feature importance algorithms will tell us 
which features are most important across the entire population, but this is one-size-fits-all approach 
that does not always apply to each individual sample (company, customer, transaction, and unit). A 
factor that is an important driver for one company may be a non-factor for another. By looking only 
at the global trends, these individual variations can get lost, with only the most common denominators 
remaining.  

With individual-level SHAP values, we can pinpoint which factors are most impactful for each 
individual company, allowing us to customize our next actions accordingly. When features are 
correlated, their impact on the model score can be split among them in an infinite number of ways. 
This means that the SHAP values will be lower than if all but one of the correlated feature(s) had been 
removed from the model. The risk making some features look less important than if their impacts 
remained undivided. To be fair, all known feature importance methods have this problem. 

 

Interpretive-Features 
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Interpretive-features is a recursive numerical approach to identify the most proximate features to the 
target value conditioned on a neural network model. The problem is that SHAP and Importance 
Permutation assumes independent features. The strength of this method is that it does not assume 
feature independence. It identifies the lowest model-redundant, highest performing feature set 
through a neural network approximator. This is the best method I know of to deal with 
multicollinearity when performing a predictor analysis as opposed to prediction task. This method 
maximises the interpretability and explainability of a model mathematically. Note, although possible, 
this method is not meant to improve your prediction accuracy, and instead is meant to highlight the 
best features to describe the movement of the target variable.  

For n respective features select their closest five correlates and add 5000 additional bootstrapped 
rows by randomly sampling from the five top correlates; collectively call them k; establish model 
m(n_k); cycle through all possible model combinations; train the model on a correlation aggregated 
time series and test the model on individual correlates. Select the set of remaining features of the top 
performing model as the low-correlation-high-prediction model. Repeat the process if necessary. This 
is a model-specific technique to get rid of unnecessary correlated features. This concept is built on the 
theory that the correlates with the highest predictive power are causally more proximate to the target 
or response variable.  

 

For more detail, see the steps as outlined below.  

1. Identify each feature’s (F) top N (5) correlates. 
2. Normalise all features. 
3. Combine and average all correlates into one time series. 
4. Train a multi-layered neural network (M) with the newly horizontally aggregated time-series. 
5. Resize top N correlates table to number of simulations requested (S= 5000) 
6. Permute the table of correlates to obtain 5000 independent simulations 
7. Test each of the 5000 independent feature combinations on the trained model M. 
8. Select the top decile performing simulations. 
9. Get the mode feature of each decile (500 S) for each Feature placement holder (F). 
10. Remove duplicates (Some features selected multiple times, because they outperform 

correlates). 
11. With smaller group of features start again with the permutation step at (5). 
12. Iterate for three different neural network node constructions and three different seeds. 
13. Find the mode features for the final iteration; generally about 1/5th of original features. 
14. Retrain a model on the mode of the last iterations (i.e. best lowest-correlative highest-

performing model) 
15. Construct a special permutation importance method that removes multi-collinear issues. 
16. Iterate by retraining model in (14) on five different seeds to obtain additional permutation 

importances.  
17. Calculate the doubly correlation adjusted p-values, select feature where p-value > 0.05 (at this 

point should be about 90%+ of all features) 
18. The result of the p-value table is the result of the features that are the most proximate to the 

target value.  
19. At this point you can do a SHAP analysis to further highlight feature characteristics.  

In my notebook, I have hardcoded some values, but this model is flexible and these parameters can 
be automated. Although this method is experimental, it has shown to produce good results (It can 
actually be tested with causal analysis). Also, instead of the feature-specific approach above, you can 
also grab the first PCA component from a group of correlated features. You can get to understand how 
these features behave collectively and what characteristics they exhibit. You can then use this as new 
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features to the model. I rarely do this, as I am interested in the best performing features as opposed 
to the best performing group of features. 

Another approach would be to permute all correlated features together and assign to them a mutual 
Permutation importance. When you use GBMs you can additionally use column-wise subsampling 
during model training in the presence of correlated features. This is roughly similar to Ridge regression 
for linear models in that it tends to evenly spread out importance across correlated features. 

 

Predictor Analysis Example: 

Examples from earnings, bankruptcy and restaurant prediction.  

 

Earnings Related Variable Importance and Response Direction for Classification 

Name Short Description Score D  

𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 This time period's analyst EPS forecast 0.247 - 

𝑑𝑖𝑓𝑓−1 The difference between the past actual EPS,  𝑝−1  and 𝑝−2 0.119 -/+ 

𝑝−1 Actual EPS 𝑡−1 0.082 - 

𝑑_𝑒_𝑑𝑖𝑓𝑓−4 
Difference between the past actual, 𝑝−4 and forecast 
𝑒𝑠𝑡_𝑎𝑣𝑔𝑡−4    

0.073 + 

𝑑𝑖𝑓𝑓−4 The difference between actual EPS 𝑝−4 and actual  𝑝−1 0.060 -/+ 

Other 57 other earnings-related variables.  0.212  

Total   0.794  

This table identifies the most important variables as identified by the Gini importance which measures the 
average gain in information. The variable importance measure (Score) is based on all variables. D identifies 
the direction of the 'coefficient' as identified by the partial dependence process.  

 

The most important earnings-related variable is the forecast itself, 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡  this is expected because 
the purpose of the model is to identify deviations from this amount and the actual, it, therefore, 
provides a measure of reference to the other variables of the model. Countless papers have identified 
the performance of analysts' forecasts in forecasting earnings as recapped by Brown (1987b). The 
lower the forecasted EPS the more likely a surprise is to occur all else equal, 32% of the outcome is 
attributable to this value. A lower EPS could proxy for a smaller firm or any other attributes. The 
second and fifth most important variable, is the difference between the actual earnings between 
𝑡−1 and 𝑡−2, called 𝑑𝑖𝑓𝑓−1, and the difference between 𝑡−1 and 𝑡−4, called 𝑑𝑖𝑓𝑓−4 These are novel 
variables not yet identified by past research. It basically says that the past increases in earnings are an 
important variable for predicting future surprises, which makes intuitive sense. If the value is very 
high, surprises become more likely. Surprises are also more likely if the value gets very low. For a lot 
of the observations, the value is very small, decreasing the likelihood of surprises. The measure is u-
shaped, which is indicative of a sort of variance measure. The next important value is the actuals 
earnings at time  𝑡−1, called 𝑝−1.  

Research by Bradshaw et al. (2012), have shown that the past annual earnings, often outperform, not 
just mechanical time series models, but also analyst' forecasts. Similarly, past quarterly earnings also 
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seem to be an important value in predicting the next quarter's earnings surprise and is similarly shaped 
to the analyst forecast, 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡. The relationship shows that where 𝑝−1 is large and  𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 is 
simultaneously low, then a positive surprise is likely to occur more than 90% of the time, all else equal. 
Further, where 𝑝−1 is low and 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 is high then a surprise is unlikely to occur. The next important 
variable is the difference four quarters ago, i.e., one year between the forecast, 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡−4   and the 
actual value, 𝑝−4.  The importance of this variable was also expected as Easterwood & Nutt (1999) and 
Fried & Givoly (1982) separately showed that past errors tend to persist. The larger the difference, the 
higher the likelihood of surprise. Other variables that showed an above 2% importance includes rolling 
averages and weighted rolling averages of the difference between past earnings and analyst forecasts, 
and the standard deviation of analyst forecasts.  

Category Importance Analysis (Multiple Importance Measures) 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Category CI RCLI 
Top 50 

Post 
GFC 
RCLI 

Pot F wF 24 
CI 

PCA 
10 

RIT Avg. Fin. 

Assets & Liabilities 1 1 1 1 1 1 1 1 1 1.0 1 

Solvency 2 3 2 2 2 2 3 2 2 2.2 2 

Income 3 2 3 3 4 5 2 4 3 3.2 3 

Valuation & Profitability 4 4 4 4 3 4 5 3 4 3.9 4 

Equity 5 5 6 5 5 3 4 6 5 4.9 5 

Expense 6 6 5 6 7 6 6 10 7 6.6 6 

Efficiency 7 7 7 8 6 7 7 9 6 7.1 7 

Other 8 8 8 9 8 8 10 8 8 8.3 8 

Liquidity 9 9 9 10 8 9 9 5 10 8.7 9 

Cash Flow 10 10 10 7 10 10 8 7 9 9.0 10 

This table is an attempt to regroup categories where there is a strong correlation 80% + and to calculate the 
rank of the categories according to 9 different predictive importance strategies. This table calculates the 
equal weighted average of nine ranking methods (10). (1) Is the normal importance measure (gain measure) 
calculated for all variables in every category. (2) Is the gain measure for only the top 50 variables. (3) Is the 
gain measure after the GFC. (4) Is the ranking according to the potency measure, being the category 
importance weighted by the number of variables in each category. (5) Is a measure (FScore) that tallies the 
amount of variable splits across all trees within each category. (6) Measures the FScore weighted by the 
probability of the splits to take place. (7) Is the overall gain measure for a newly created model that only 
incorporates the 24 best variables. (8) Is the importance of the first PCA component for each category. (9) 
Avg. is the equal-weighted rank average for each category. (10) Is the final ranking obtained by ranking the 
raw average. When percentage growth measures were removed from the categories, all categories 
remained unchanged apart from a swap between Other and Liquidity. A further split in category where 
solvency ratios were split between capital structure, and coverage and cash flow ratioratios resulted in the 
following rank among categories, (1) asset and liabilities (2) Income (3) valuation and profitability, (4) capital 
structure, (5) equity, (6) interest coverage, (7) expense, (8) efficiency, (9) cash flow ratios, (10) other ratios 
(11) liquidity ratios, (12) cash flow values. The ratio values are italicised.  
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Interaction Pair Partial Dependence Plots (Depth Two) 

 

 

 (1) Top left is the interaction between Interest and Related Expense (xint) and the EPS Excluding Extra. Items 
(epspx) and resulting response. (2) Top right is the interaction between Price to Sales (ps) and Long-Term 
Debt (dltt). (3) Bottom left is the interaction between Total Debt to Invested Capital (totdebt_invcap) and 
Income Before Extraordinary Items (ibc) and the interaction effect on the bankruptcy outcome. (4) Bottom 
right is the interaction between Total Liabilities (lt) and the EPS Excluding Extra. Items (epspx). 

(1) (2) 

(3) (4) 
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Cross Tab - Top Variable Interactions 

 
totdebt_invcap ps lt xint pi 

ibc 779 704 63 45 13 

pi 66 585 209 338 0 

epspx 228 76 551 509 34 

dltt 17 418 156 34 14 

debt_assets 43 127 239 77 390 

ppent 71 279 82 28 61 

 

This table represents the most important interaction pairs as measured by the gain statistic at an interaction 
depth of two. The table has been constructed to highlight the top ten interactions. For completeness, the 
surrounding interactions have also been included. Variables vertically follows, Income Before Extraordinary 
Items (ibc), Pre-tax Income (pi), EPS Excluding Extra. Items (epspx), Long Term Debt (dltt), Total Debt to Total 
Assets (debt_assets), Property Plant & Equipment (ppent). And horizontally, Total Debt to Invested Capital 
(totdebt_invcap), Price to Sales (ps), Total Liabilities (lt), Interest and Related Expense (xint). 

 

Interaction Analysis – Depth Three 

 

 Term 1 Sign Term 2 Sign Term 3 Sign RII Gain 

(1) epsfx - ibc - totdebt_invcap + 100 456 

(2) debt_at + pi - rd_sale - 95 435 

(3) dpc - equity_invcap + ps - 92 419 

(4) ibc - ps + totdebt_invcap + 88 402 

(5) dltt + ibc - ps - 84 383 

(6) dltt + pi - ps - 84 382 

(7) ibc - ps - ps_prtc - 83 378 

(8) ibc - ibc - totdebt_invcap + 79 362 

(9) dltt + ps - txt + 76 348 

(10) ibc - ppent + ps - 74 336 

(11) at + debt_at + epspx - 68 310 

Out of the top 50 variable list, there are millions of ways to conjure up directional relationships. Due to the 
nature of nonlinear relationships, to conceptually understand the web of relationship, it is best to identify the 
top interaction pairs. This table represents the most important interaction pairs as measured by the gain 
statistic at an interaction depth of three. For easier reading, I also report the relative interaction importance 
(RII). The sign purely indicates the average direction of each variable. The interaction terms are much more 
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informative than single standing variables. Interactions is at the core of what gradient boosting tree models 
are all about. Unique Terms 1 are EPS (Diluted) - Excl. Extra. Items (epsfx), Assets - Total (at). Unique Terms 2 
are Common Equity/Invested Capital (equity_invcap). Unique Terms 3 are Research and Development/Sales 
(rd_sale) and Income Taxes - Total (txt).   

 

Bubble Plot and Ranking of each Model's Most Important Categories. 

 

 

This figure reports the relative importance of the five outcome classification models and the associated 
accounting dimensions. There is a large amount of heterogeneity between the different classification models.  

 

An important benefit of SHAP is that it provides the aggregate direction a feature has in relation 

to the response variable. Figure 1 shows how the SHAP values interact with each other to produce the 

final output. Although, a few variables cause a large amount of the movement, Figure 1 also shows that 

less important variables play a large role in aggregate due to the sheer number of variables present. 

Figure 2 shows these predictions vertically while sorting them by similarity to show the effect these 

different features have on the final outcome. Here, I have only plotted a subsample of a hundred random 

observations. The final output is where the red and blue stacks meet. Each vertical slice is a DNA strand 

of sorts displaying the characteristics driving the predicted outcome of each observation.    
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Figure 1: Feature Effect on Log-odds Output for a Single Observation  

 

 

The plots above show an example of the predicted outcomes for two restaurants' observations. The final output 

is the probability of restaurant closure (0) and the probability of restaurant success (1). As can be seen from 

the plots, a multitude of features lead to the final predicted outcome.  The top observation is predicted to remain 

open and the bottom observation is predicted to close within the next two years with a decision threshold (rule) 

of 50%.  

 

 

Figure 2: Feature Effect on Log-odds Output for a Subsample  

 

 

This plot replicates Figure 1 but for a subsample of 100 firms that are vertically plotted. The samples are sorted 

by similarity and stacked next to each other. In this plot the predicted outputs are where the blue and red 

boundaries meet. The variable effects are stacked vertically. The predicted outcome is where the blue and red 

areas meet. This plot is a close analogue to a DNA strand, the intensity and direction of each of the 430 

characteristics determines the final outcome.  
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Figure 3: Distribution of Individual Feature Effects on Output 

 

 

This chart reports all the predicted outcomes for each individual variable. It takes on the form of multiple 

horizontal violin plots, in that it not only reports the effect on outcome but also reports the feature size based 

on the continuous colour legend and the distribution of the outcomes.  
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Figure 4: Individual Conditional Expectation (Depth One) 

    

 

These plots point out the non-linear nature the top 4 features. These figures report the marginal relationship of 

the feature with the predicted outcome. The green marks are open restaurants, the red marks are closed 

restaurants. The black line (yellow outline), presents the features' marginal effect on the predicted outcome for 

all observations around the central points on the x-axis. The blue lines are an indication of how all other features 

further effect the observations to produce the final outcome. (1) Top left is the oldest review of the restaurant 

in number of days; the older the less likely the restaurant is to close (2) Top right is the number of useful 

(critical) reviews; the most critical the more likely the restaurant is to close (3) Bottom left is the average age 

of the oldest review across the chain in number of days; the older the average first review across the chain the 

less likely the individual restaurant is to close (4) And bottom right measures the slope of historic ratings as 

measure by stars out of five; the larger the slope the less likely the restaurant is to close.   

 

 

(1) (2) 

(3) (4) 
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Appendix 
 

Limitlessness 

Many things in machine learning is limitless in the sense that you can tweak it endlessly to achieve 
some converging performance ceiling. This include the countless ways to do cross validation, to select 
hyperparameters, to do up-and down-sampling, to perform outlier removal strategies, missing data 
replacement strategies and many more. Further, features can for example be transformed in an 
infinite number of ways; the dimensions of features can also be reduced and inflated in innumerable 
ways; features can be generated through countless unsupervised methods; features can simply be 
combined, added, or deducted. It is truly limitless.  

The question is how do we know if any of these adjustments would lead to a better model? Most of 
the time we use proxies for potential performance (ppp) like the Akaike information criterion (AIC), or 
feature-target correlation. These approaches get us halfway towards a good outcome. Another way 
to go about it is to retest your algorithm once you introduce a new adjustment. The tests can remain 
in-sample, but for each new test, the cross-validating sections should change, or some other form of 
randomness have to be introduced to ensure that these adjustments do not overfit the validation set. 
You could also develop two algorithms with different fundamental construction side by side and do 
constant experimentation; e.g. to know if adjustments should be added to your primary algorithm 
(XGBoost) test the improvements in your secondary algorithm (CNN). In addition, make sure to 
perform the correct pre-processing transformations for each algorithm. A cleaner method is to use 
new data each time you introduce a new adjustment, however, the luxury of a lot of data is hard to 
come by, even in finance.  

Depending on whether you are working with regression or classification problems, you should look at 
the mean increase in for example accuracy and an increase in the ROC (AUC) score. If the model 
improves, accept the adjustment. If it is expensive to retrain a full model, create smaller models to do 
these tests on. If it is still a problem, then resort to the ppp metrics. Do note that the more tests you 
perform, the more you are abusing the data and increasing the likelihood of overfitting, leading to 
poor out of sample performance. Finally, one of the best way to automate this experiment testing 
process is with Bayesian optimisation. 

 

Alternative Data 

About 40 years ago Richard Dennis and William Eckhardt put systematic trend following systems on a 
roll, 15 years later statistical arbitrage made its way onto the scene, 10 years later high frequency 
trading started to stick its head out, in the meantime, machine learning tools was introduced to make 
statistical arbitrage much easier and more accurate, lately we have seen the rise of alternative data 
strategies, posed to be as important as the previous three ‘revolutions’. Although the commercial 
potential of AI and alternative data is enormous, trading results will side with groups with bigger 
machines, more innovative data scientists and larger and better datasets. 

As much as I hate the recent developments in the area, depending on the size of your organisation, 
some of the data might be of benefit, not because they produce independent alpha, but because they 
provide for important interaction effects with current data. After leaving my morality at the door, I 
would give special attention to scraped data (see the restaurant example in Quantamental strategies, 
or follow this data), as well as credit card, email transaction and web traffic data; most other data are 
overblown; the idea is to get as close to the management accounts as possible, the above are good 
proxies. I have also heard of a few people that are successful earnings call transcripts.  
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Recursive Learning: 

It is important to be intelligent all the way down. Although one can create reinforcement-learning 
agents that are able to ingest a lot of data and make profitable decisions inside an environment, you 
are often better off to create more simple agents at the lower level while pyramiding additional 
decision-making responsibilities upwards. Lower level agents can look at pricing, fundamental and 
limited capital market data while a meta-agent can select or combine strategies based on potential 
regime shifts that happen at the economic level.  A meta-learner effectively chooses between a few 
hundred models based on the current macro-regime. At the end, all the meta-learners, or depending 
on how deep you go, meta-cubed learners should form part of an overall portfolio. The core function 
is to carry our portfolio level statistical arbitrage to the extreme using all the tools available financial 
or otherwise.  

It is important to understand this concept, all the data do not have to be ingested at the lower levels. 
Eventually all informative data should be incorporated somewhere in the hierarchical structure. And, 
to know where becomes an optimisation problem in itself. I will introduce another concept that is 
controversial but makes economic sense. Once your model is fully developed, introduce a little 
random gaussian noise at as many levels as possible. When large systematic funds collectively dive, 
these funds it is because they are too focused on next period performance as opposed to long-term 
generalisability. Discretionary funds meanwhile do fine because their investment decisions do not 
follow a particular rationale. Systematic funds should regularise their trading strategies. This is going 
to become more important as new entrants crowd out the incumbents and the incumbents crowd out 
themselves.  

You need not use an additional level of reinforcement learning algorithm; you can also use clustering 
algorithms. One can discover multiple economic regimes by simply using a KNN clustering technique 
to select the potential regime of the last 30 days. Then one can perform strategy selection by looking 
at the historic success across all regime types. While doing this, pay attention to the stability of 
clusters. The assignments might not persist in time series; when you face these problems always 
remember that MiniBatch and Ward clustering algorithms tend to be more persistent.  

 

Tricks and Tips: 

• Create a lagged variable of the difference between the past predicted and past true value. 
Naturally set this value to zero at the start of the process.  

• To identify information leakage, or whether data ‘peeking’ has occurred, look at which feature 
best predicts whether an observation is in the test or training set.  

• Difference between a good and great strategy is not that important, position sizing, risk 
management, resilience, execution, and infrastructure are key – and stay wary of front 
running brokers.  

• Decide on high value vs low value strategies by considering the strength of your buying power.  

• Using an unbiased auto-ml model I have investigated the returns that could be earned using 
machine learning models over time. The profitability of using general ML and publicly available 
data is monotonously decreasing. You either have to join the march down to zero marginal 
profits or think outside of the auto-ml box – note doing this is already quite a high threshold.  

• Discretionary funds should think of a post-ml strategy, where you seek to understand how far 
reaching these models can be and to reaffirm a strategy that invests beyond an ML-assisted 
purview. 

• Understand that finance always goes through its crazes, from chaos theory to GARCH models. 
Although ML could generally be revolutionary, I suspect it will mostly be the result of 
minimising overheard costs as opposed to improving alpha.   
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• Change nodes in recurrent neural networks to position different levels of importance, not just 
in terms of time but also by weighting other potential criteria such as volume, whilst still 
preserving the causal order.  

• Never forget outlier detection and Winzorisation of data. 

• If you are working with long term data, adjust the values with inflation, otherwise it might 
lead to some low-level time leakage (yes these models are that smart).   

• When PCAs are non-performant, try ICAs, they are better at distinguishing non-Gaussian 
signals, even better, entropy component analysis.   

• Always execute early stopping where possible on a validation set.  

• Always know the power of your statistical tests; you might be throwing away many potential 
true positives.  

• Be cautious of trading strategies that produce stable daily profits, there is a good chance that 
you are engaged in negative skew trading.  

• Do not be afraid to pool multiple instruments together, it is an excellent way of getting more 
data history.  

• Do not be afraid to focus on the Sharpe or other risk adjusted performance measures and 
resorting to leverage to buy returns.  

• Bootstrap your optimisation where possible, with that I mean repeat the optimisation many 
times and average out the resulting weights. This is already quite common in machine 
learning.  

• Discrete mathematics turn up in many ML problems, often times there is no closed form 
solutions, and the only hope is to use brute force.  

• There is at least twenty different cross-validation techniques that I have encountered or 
created to suit a specific task. One can be very creative with cross-validation techniques, hold 
two rules in mind when working with values in time series, do not leak too much information 
and give added importance to more recent results; these two would always be in conflict.  

• The next tip might sound juvenile, but do not forget to retrain your model on the entire train 
set with the newly discovered optimised hyperparameters.  

• Unlike some researchers, I believe in the power of backtests to improve models to the point 
they are used to adjust hyperparameters (some call this model development). However, once 
you look at the performance on the test data (out of sample back-test), you should not change 
the model anymore, you should either keep the model or discard the model. If you keep the 
model, you can retrain and re-optimize your parameters with both the test and train data. 

• The less you overfit the less you have to worry about leakage.  

• Make sure that your data is not misaligned, pay special attention to fundamental data, the 
data that should be recorded is the data that was available to the public at that point - also 
make sure not to include the adjusted amounts, as the adjustments only occurred later.  

• PCAs are sensitive to outliers, so Winzorise the data at the 2.5% and 97.5% percentiles. It is 
also good practice to normalise the data if you have variables with different units of 
measurement before performing PCA.  

 

Gradient Boosting Model 

 

Supervised learning refers to the mathematical structure describing how to make a prediction 𝒚𝒊 given 

𝒙𝒊. The value we predict, 𝒚𝒊, has different interpretations depending on whether we are implementing 

a classification or a regression task. In classification task prediction, 𝒚𝒊, is the probability of an earnings 

surprise event of some specified threshold. For the regression task, the 𝒚𝒊 is the actual EPS value for 

the quarter. The inputs, 𝒙𝒊, have been selected based on selection procedures applied once for each 
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of the models. Apart from the different prediction types, in the classification task, the model gets 

logistic transformed to obtain a vector of probabilities for each observation and associated categories. 

In supervised learning, parameters play an important role. The parameters are the undetermined part 

that we are required to learn using the training data. For example, in a linear univariate regression, 

𝑦 𝑖 = ∑ 𝜃j𝒙𝒊𝒋𝑗  , the coefficient 𝜃 is the parameter. 

The task is ultimately to find the best parameters and to choose a computationally efficient way of 

doing so. This choice is largely driven by whether or not we are working with a regression or 

classification problem. To measure a model's performance, given some parameter selections, we are 

required to define an objective function. The following is a compressed form of the objective function, 

𝑂𝑏𝑗(𝛩) = 𝐿(𝜃) + 𝛺(𝛩). In this equation, L is the training loss function; the regularisation term is 𝛺. 

The training loss function tests the predictive ability of the model using training data. A commonly 

used method to calculate the training loss is the mean squared error, 𝐿(𝜃) = ∑ (𝒚𝑖 − 𝑦 𝑖)
2

𝑖 . Thus, the 

parameters get passed into a model that calculates, 𝒚 𝒊, a series of predictions, that gets compared 

against the actual values in a mean squared error function to calculate the loss.  The regularisation 

term controls the complexity of the model, which helps to avoid overfitting. The Extreme, X, of the 

XGBoost model, relates to an extreme form of regularisation that controls for over-fitting, leading to 

improved performance over other models.  There are countless ways to regularise models, in essence, 

we constrain a model by giving it fewer degrees of freedom; for example, to regularise a polynomial 

model, we can transform the model to reduce the number of polynomial degrees. The tree ensemble 

can either be a set of classification or a set of regression trees. It is usually the case that one tree is 

not sufficiently predictive, hence the use of a tree ensemble model that sums the predictions of many 

trees together. Mathematically, the model can be written in the following form �̂�𝑖 =

∑ 𝑓𝑘(𝒙𝒊)
𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝐹. Here, K is the number of trees, and f represents one possible function from the 

entire functional space F. F is a set of all possible classification and regression trees (CARTs). This 

expression then simply adds multiple models together that lives within the allowable CART function 

space. Therefore, combining the model, the training loss and regularisation function, we can gain our 

objective function and seek to optimise it, the function can be written as follows, 𝑂𝑏𝑗(𝜃) =

∑ 𝑙 (𝒚𝒊, �̂�𝑖
(𝑡)
)𝑛

𝑖 +∑ 𝛺(𝑓𝑖)
𝐾
𝑘=1 . Thus far, the model is similar to that of a random forest, the difference 

being in how the models are trained. 

For the next part, we have to let the trees learn, so for each tree, we have to describe and optimise 

an objective function, we can start off by assuming the following function, 𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 , )
𝑛
𝑖 +

∑ 𝛺(𝑓𝑖)
𝑡
𝑖=1 . By looking at the function it is important that we identify the parameters of the trees. We 

want to learn the functions, 𝑓𝑖, each which contains a tree structure and associated leaf scores. This is 

more complex than traditional methods where you can simply take the gradient and optimise for it. 

Instead, Gradient Boosting uses an additive strategy, whereby we learn to adjust and add an extra tree 

after each iteration. We write our prediction value at step t as �̂�𝑖
(𝑡)

, so that we have  �̂�𝑖
(𝑡)
= 

∑ 𝑓𝑘(𝒙𝒊) = �̂�𝑖
(𝑡−1)

+𝑡
𝑘=1 𝑓𝑡(𝒙𝒊). Then we simply choose the tree that optimises our objective, 𝑂𝑏𝑗(𝑡) =

∑ 𝑙 (𝑦𝑖 , �̂�𝑖
(𝑡)
)𝑛

𝑖 + ∑ 𝛺(𝑓𝑖) =  ∑ 𝑙 (𝒚𝒊, �̂�𝑖
(𝑡−1)

) +𝑛
𝑖=1 𝑓𝑡(𝒙𝒊) + 𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑡
𝑘=1 . By using MSE as 

the loss function, it becomes 𝑂𝑏𝑗(𝑡) = ∑ [2 (�̂�𝑖
(𝑡−1) − 𝒚𝒊) 𝑓𝑡(𝒙𝒊) + 𝑓𝑡(𝒙𝒊)

2] +𝑛
𝑖=1  𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

The form of MSE is easy to deal with. The Taylor expansion can simply be taken to the second order. 

𝑂𝑏𝑗(𝑡) = ∑ [𝑙 (𝑦𝑖 , �̂�𝑖
(𝑡−1)) + 𝑔𝑖𝑓𝑡(𝒙𝒊) + 

1

2
ℎ𝑗𝑓𝑡

2(𝒙𝒊)]
𝑛
𝑖=1  +  𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 𝑔𝑖  and ℎ𝑖  is 

defined as, 𝑔𝑖 = 𝜕𝑦̂ 𝑖
(𝑡−1)  𝑙(𝒚𝒊, �̂�𝑖

(𝑡−1)
),  ℎ𝑖 = 𝜕𝑦̂ 𝑖

(𝑡−1)
2  𝑙(𝒚𝒊, �̂�𝑖

(𝑡−1)
). After all the constants are removed, 

then the objective at t get transformed to, ∑ [𝑔𝑖𝑓𝑡(𝒙𝒊) + 
1

2
ℎ𝑗𝑓𝑡

2(𝒙𝒊)]
𝑛
𝑖=1  +  𝛺(𝑓𝑡). This then becomes 
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an adjusted optimization function for the new tree. Although we have looked at the training step, we 

have not looked at regularisation yet. The next step is to specify how complex the tree should be, 

𝛺(𝑓𝑡). To do this we can improve the tree definition to F(x), 𝑓𝑡(𝒙) = 𝑤𝑞(𝒙) , 𝑤 ∈ ℝ
𝑇 , 𝑞: ℝ𝑚 →

{1, 2,… , 𝑇}. Here w represents the scores of the leaves presented in vector form and q represents a 

function that assigns each point to the appropriate leaf, lastly T denotes how many leafs there are. 

The complexity can be defined as 𝑎 𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1 ; there are more ways to formulate and 

define how complex a model is or should be in practice, but this one is quite practical and easy to 

conceptualise. Once the tree model is described, the objective value w.r.t. the t-th tree can be written 

as follows: 𝑂𝑏𝑗(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝒙𝒊) + 
1

2
ℎ𝑗𝑓𝑡

2(𝒙𝒊)]
𝑛
𝑖=1  +  𝛾𝑇 +

1

2
𝜆 ∑ 𝑤𝑗

2 𝑇
𝑗=1  = ∑ [(∑ 𝑔𝑖𝑖∈𝐼𝑗 )𝑤𝑗 +

𝑇
𝐽=1

 
1

2
(∑ 𝑔𝑖𝑖∈𝐼𝑗 + 𝜆)𝑤𝑗

2]  +  𝛾𝑇, where I𝑗 = {i|q(x𝑗) = j}  represents a full set of all the data points. as 

have been assigned to the j-th leaf. The equation can then further be compressed by describing 𝐺𝑗 =

 ∑ 𝑔𝑖𝑖∈𝐼𝑗  and 𝐻𝐽 = ∑ ℎ𝑖𝑖∈𝐼𝑗 , then  𝑂𝑏𝑗(𝑡) = ∑ [𝐺𝑗𝑤𝑗 + 
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]𝑇
𝐽=1  +  𝛾𝑇. In the preceding 

equation the weights, 𝑤𝑗 are independent w.r.t each other, the form 𝐺𝑗𝑤𝑗 + 
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2 is 

quadratic, and the best weight for a structure q(x) is given by the following expression. 𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗+𝜆
 

,  𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆
𝑇
𝑗=1  +  𝛾𝑇. This equation measures how good a tree structure 𝑞(𝑥) is. A lower 

score is better for the ultimate structure of a tre. Now that we know how to measure the fittingness 

of a tree is, we can identify all the trees and select the best one. It is, however, not possible to approach 

it this way and instead has to be done for one depth level of a tree at a time. This can be approached 

by splitting a leaf into two sections and then recording its gain. The following equation represents this 

process, 𝐺𝑎𝑖𝑛 =
1

2
[
𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝑙+𝐺𝑙)
2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾. If the gain obtained is equal to or smaller than 𝛾, 

then it would be better if we do not add the branch to the tree, this is often referred to as the pruning 

technique. We basically search for the ultimate split, if all instances are sorted in order, we simply scan 

left to right to sufficiently calculate the structure scores of all possible solutions and then identify the 

most efficient split.  

 

Finance and Machine Learning 

Each industry will be touched by machine learning. In the future, I would go down this mapping to 
identify all the financial domains bound to be changed by recent advances in machine learning.  

1. Corporate and Retail Banking 
2. Investment Banking 
3. Insurance Services 
4. Payment Services 
5. Financial Management 

o Public Finance 
o Financial Economics 
o Management Accounting 

6. Advisory Services 
o Personal Finance 
o Consulting 

7. Investment Services 
o Private Equity and Venture Capital 
o Wealth Management 
o Asset Management 
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o Broker Dealer 
 Liquidity 

• Market Making 

• Predicting Customer Needs 
o Recommender AI System 

• Shocks and volatiliy 
 Strat: 

• Extreme Risk 

• Simulation 
 Capital Management 

 

Other SSRN Papers 

• Financial Event Prediction using Machine Learning 

• Predicting Corporate Bankruptcies 

• Predicting Earnings Surprises 
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