

Machine Learning in Asset Management

Data + Code

July 2019

Derek Snow

Electronic copy available at: https://ssrn.com/abstract=3420952

Introductory Thoughts

Machine learning (ML) in finance can take on an (1) academic, (2) front office, (3) and a back-office
form. The techniques used in the front and back office falls within financial industry machine learning1.
This paper will look at techniques from both an academic2 and industry machine learning perspective.
Quantitative finance offers a wealth of opportunities to learn more about applied and research-driven
data science (DS). For finance problems, the goal is easy, but the solution is hard. You have vast
quarries of data available that can readily be applied using the most recent ML development. Pick your
favourite ML/DS acronym; I can assure you there is a place for it in finance. This paper is not meant to
be read line by line, it’s a ctr+f type of affair, let your eyes guide you and follow the blue links for gold.
This paper will always remain in draft form and is an informal collection of a few thoughts for machine
learning applications in asset management3.

In most fields, we see a mismatch between industry and academia. That is not the case for machine
learning. By nature of its short development cycle, academia and industry closely cooperate frequently
and hire out of the same talent pool; this is not just the case in finance but in all applied machine
learning fields. Academic finance seems to be applying machine learning differently depending on
whether they are in the mathematical finance and traditional finance camp. Within these groups,
there is a second division along the lines of predictability and interpretability; the result of regulatory
requirements. Financial machine learning is divided into groups that work on the interpretability (b-
hatters) and explainability of their models (y-hatters). The b-hatters focus on developing models that
would please causal theorists and regulators and the y-hatters side with prediction science and hedge-
funds.

B-hatters generally sides with traditional finance and y-hatting with financial mathematics and
engineering. This might turn out to be a false dichotomy; in my own research, I have found both to be
extremely important for hypothesis and prediction tasks. In this paper, I am looking at the applications
of machine learning in asset management, being one of many financial services. Financial services can
broadly be divided into, corporate and retail banking, investment banking, insurance services,
payment services, investment services, financial management, and other advisory services. In this,
paper the focus in on investment services. This paper will pay specific attention to asset management
and brokerage services as opposed to wealth management, private equity and venture capital
management, not to say that they will not benefit from the same machine learning developments.
This paper is conducted in Python; if you do not know Python or machine learning have a quick run
through this introduction.

Historically algorithmic trading used to be more narrowly defined as the automation of sell-side trade
execution, but since the introduction of more capable algorithms the definition have grown to include
idea generation, alpha factor design, asset allocation, position sizing, and the testing of strategies.
Machine learning, from the vantage of a decision-making tool, can help in all of these areas. Firms
hiring quants as faced with an explore-exploit dilemma when weighing up candidates. As it stands the
hiring criteria at most firms are highly in favour of exploit driven abilities, which is unfortunate,
because the future of great strategies lies in financial ‘hackers’. In industry we see time and time again
how applied machine learning enthusiast outperform and outthink machine learning PhDs. We have

1 This paper applies machine learning models from an applied industry finance side as opposed to a business
automation side i.e. financial machine learning (FinML) as opposed to business machine learning (BML).
2 The front office does and will keep on benefiting from both traditional and mathematical academic finance
research. Academic research generally require some additional steps to make the research it ‘practical’. Both
the front and back office also benefits from advances in business machine learning, which is a subsection of AI
unrelated to the specific industry but essential for the general automation of work and administrative
processes and decision-making.
3 For a more formal write-up see part one and part two on the JFDS.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://github.com/firmai/industry-machine-learning
https://drive.google.com/open?id=1sm9JJv62CAef7QxYiYT-SaimQGcnAMf-
https://github.com/firmai/financial-machine-learning
https://github.com/firmai/business-machine-learning
https://jfds.pm-research.com/content/2/1/10
https://jfds.pm-research.com/content/early/2020/03/12/jfds.2020.1.029
https://jfds.pm-research.com/

entered a period of experimentation due to fast computation feedback. We need thinkers in the true
original sense of the word.

Asset Management

Asset management can be broken into the following tasks: (1) portfolio construction, (2) risk
management, (3) capital management, (4) infrastructure and deployment, and (5) sales and
marketing. This article focuses on portfolio construction using machine learning. Financial machine
learning research can loosely be divided into four streams. The first concerns asset price prediction
where researchers attempt to predict the future value of securities using a machine learning
methodology. The second stream involves the prediction of hard or soft financial events like earnings
surprises, regime changes, corporate defaults, and mergers and acquisitions. The third stream entails
the prediction and/or estimation of values that are not directly related to the price of a security, such
as future revenue, volatility, firm valuation, credit ratings and factor quantiles. The fourth and last
stream comprises the use of machine learning techniques to solve traditional optimization and
simulation problems in finance like optimal execution, position sizing, and portfolio optimization.

The first three streams are concerned with the creation of trading strategies, while the last stream is
concerned with everything else, like weight optimization, optimal execution, risk management, and
capital management. Within these streams we can make use various machine learning techniques.
These techniques can be broken into the following: (1) processing of unstructured data, (2) supervised
learning, (3) validation techniques, (4) unsupervised learning, and (5) reinforcement learning. Every
machine learning solution is constructed out of a mixture of the above. In this series, I would look at
the application of the above-mentioned technologies in asset management. Each one of finance’s
subsectors and services will benefit from AI, be it industry or administrative AI. To prove it I will at
some point in the future include a few working examples for each of the seven sectors of finance.

1. Portfolio Optimisation:

• Trading Strategies

• Weight Optimisation

• Optimal Execution
2. Risk Measurement:

• Extreme Risk

• Simulation
3. Capital Management

• e.g. Kelly Criterion
4. Infrastructure and Deployment

• Cloud

• Diagnostics

• Monitoring and Testing
5. Sales and Marketing

• Product Recommendation

• Customer Service

Electronic copy available at: https://ssrn.com/abstract=3420952

Portfolio Construction

Trading Strategies

1. Tiny CTA

Resources:
See this paper and blog for further
explanation.
Data, Code

2. Tiny RL
Resources:
See this paper and/or blog for
further explanation.
Data, Code

3. Tiny VIX CMF
Resources:
Data, Code

4. Quantamental
Resources:
Web-scrapers, Data, Code,
Interactive Report.

5. Earnings Surprise
Resources:
Code

6. Bankruptcy Prediction
Resources:
Data, Code, SSRN

7. Filing Outcomes
Resources:
Data

8. Credit Rating Arbitrage
Resources:
Code

9. Factor Investing:
Resources:
Paper, Code, Data

10. Systematic Global Macro
Resources:
Data, Code

11. Mixture Models
Resources:
Data, Code

12. Evolutionary
Resources:
Code

13. Agent Strategy
Resources:
Code

14. Stacked Trading

Resources:
Code, Blog

15. Deep Trading
Resources:Code

Weight Optimisation

1. Online Portfolio Selection (OLPS)

Resources:
Code

2. HRP
Resources:
Data, Code

3. Deep
Resources:
Data, Code, Paper

4. Linear Regression
Resources:
Code, Paper

5. PCA and Hierarchical
Resource:
Code

5. Network Graph:
Resource:

 Code
5. Bayesian Sentiment

Resource:
 Code

5. Reinforcement Learning
Resource:

 Code

All Data and Code

GitHub Project Repository

LinkedIn FirmAI Profile

Electronic copy available at: https://ssrn.com/abstract=3420952

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2695101
https://www.linkedin.com/pulse/implement-cta-less-than-10-lines-code-thomas-schmelzer/
http://drive.google.com/open?id=12BB8KpFYJSx41yvHhtoLYE_ZZOHNamP8
https://drive.google.com/open?id=1EwbHhBZL_PRTphR25EbMQA9dV7jC4CjT
http://cs229.stanford.edu/proj2006/Molina-StockTradingWithRecurrentReinforcementLearning.pdf
https://teddykoker.com/
https://drive.google.com/open?id=1k7J5y1xCssIna45d_Xw78d2frgzD94Li
https://drive.google.com/open?id=1IRrR6kWjunERzZqrszJ9_q-C1Yj5L0Qj
https://drive.google.com/open?id=1Yv2_mTjZMANoL9fM0ajOsOFEc9MJZAMU
https://drive.google.com/open?id=186j-gtkXCgzj06WCWDAU9yhYXP9SfgLu
https://drive.google.com/drive/folders/12aZ7vg_3HIdPYZ4GavYY7BjptlAPGFtc?usp=sharing
https://drive.google.com/open?id=1b0OXiSKnacEDftYKgov619SCfXwpcUWT
https://drive.google.com/open?id=1PqtFfcr1ejreGr6XIoZCs8jsD7AccuL7
https://github.com/firmai/interactive-corporate-report
https://drive.google.com/open?id=1KtGauKizS8QISuDCW0SwIxbYPeBwTQxF
https://drive.google.com/open?id=1UAIZBNHag-AdWZ4z7nd_y5THQ89D-IQh
https://drive.google.com/open?id=1Z2ZyvEoWsRfHSa1f7g0m1O-JiXedUdb_
https://drive.google.com/open?id=1cDhrrAp07e-2TgrPQginXUNQpdbTpq-u
https://drive.google.com/open?id=1i_yERL4i6qp57C0LdSWEV8iYv_rtAZLF
https://docplayer.net/120877135-Industry-return-predictability-a-machine-learning-approach.html
https://drive.google.com/open?id=1O0LQ_khTfsbFG5aN3-AqV6DEIRWQ6UuP
https://drive.google.com/open?id=1cc43729RyOPCsDJ3r46SdHcJJp1AUmaA
https://drive.google.com/open?id=1ePKFtfjBrfg3xDtg_dbssykeSd8ZmA1z
https://drive.google.com/open?id=10bN3kNjl9EMDB5Tt1ArXO8IaxLiPh_Zd
https://drive.google.com/open?id=1jmR2Jlk6Hy7J7c2jZFEK1oXptOHbDYLK
https://drive.google.com/open?id=1tRIt7lIJErWKwoHIuBS6rZbZo2EYBNTN
https://drive.google.com/open?id=116Aj9kbZcrCyR5MDu58HkWE53lacAE52
https://drive.google.com/open?id=1qCvIeui5dJKMXnjUm9_wiPf65VVHdWwz
https://drive.google.com/open?id=11SG9KIWUxV9fgrrpAs0QifgGrcdzk2dh
https://www.kdnuggets.com/2017/02/stacking-models-imropved-predictions.html
https://drive.google.com/open?id=1NoSOI29giC3zOeWNMGQCUUQCRXemD9Ix
https://drive.google.com/open?id=1TPiJE6klq7D1ZzwoKhZtPA6WzwD1txHD
https://drive.google.com/open?id=198fpHhD973i3rKa9D7oz-SrmBwPykQEc
https://drive.google.com/open?id=1z3Fe7QXZ6c566KOG3HtQEfCc84UAGwFf
https://drive.google.com/open?id=1bJcUZbrZ8HFXs-cd0vGHeMop16Vf3n23
https://drive.google.com/open?id=1-hOEAiJqaNTUYIyamj26ZvHJNZq9XV09
https://arxiv.org/abs/1605.07230
https://drive.google.com/open?id=1YDZQvz6Pn2AFDX2Uprfaq9JoGvk7RpJy
https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-1082.00120
https://colab.research.google.com/drive/1mm9r6EZOERHYkycDbc74GY7S2U6h1oTc
https://colab.research.google.com/drive/10WNiVuICvFajW2uTDrwI6w7aSUkjINPl
https://colab.research.google.com/drive/1sMAoJZuuNIRnrivAzxHV5fulMOWO17mb
https://colab.research.google.com/drive/1L3-D2ZmGZkPRsB9gb5BviGkSkMTLti7_
https://drive.google.com/open?id=1utWE_xx1N93BTDkofiWPbhjcfh_W8_aK
https://github.com/firmai/machine-learning-asset-management
https://www.linkedin.com/company/firmai/

Trading Strategies

An important first step in constructing an actively managed portfolio is to identify assets and trading
strategies that can benefit the investor. In this section trading, all strategies are given a machine
learning interpretation and the terminology is used loosely. CTA is a strategy where one takes a
position in an asset only after a trend appears in the pricing data. Reinforcement learning strategies
uses statistical and machine learning tools to maximise a reward function. Reconstructed asset
strategies seek to uncover arbitrage by reconstructing tradeable assets (derivate) using individual
components. Quantamental strategies offers additional information by deriving fair valuations using
machine-learning models. Event-driven strategies puts a probability on an outcome occurring and use
this probability to consider whether they can identify a viable trading opportunity. Statistical arbitrage
seeks mispricing by detecting security relationships and potential anomalies believing the anomaly
will return to normal. Factor investing involves the acquisition of assets that exhibit a trait associated
with promising investment returns. Systematic global macro, which relies on macroeconomic
principles to trade across asset classes and countries. Unsupervised strategies are any strategies that
make use of an unsupervised learning method to improve the strategy's prediction accuracy and
profitability. Free agent strategies are gradient free reinforcement learning strategies that rely on
random movements and introduction of Gaussian movements to select the best performing agents.
Gradient agent are reinforcement learning strategies that seek to maximise a reward function though
a method known as gradient descent. Supervised learning strategies make price or classification
prediction for a point of time in the future that can be used to design trading strategies.

In the examples that follow, I sometimes neglect to include the code, the data, and sometimes both.
This is mostly due to copyright and data policy concerns. The strategies in this paper comes from my
own work, collaborations and the work of others. In total, there are 15 distinct trading varieties and
around 100 trading strategies. Where the work is my own, I try to, as best I can provide for the full
pipeline. Note: this is not investing advice.

Electronic copy available at: https://ssrn.com/abstract=3420952

Exhibit 1: Financial Machine Learning in Portfolio Construction

Exhibit 1 outlines a few different ways in which machine learning can be used in portfolio
construction. Portfolio construction can broadly be broken into trading strategies4 and weight
optimization. In the first part of this series we will look at trading strategies and in the second part we
will look at weight optimization. The trading strategy styles in the first three streams of financial
machine learning research, Price, Event, and Value, can be split into unique trading themes depending
on the data used and the outcome one is trying to predict. Price strategies include Technical,
Systematic Global Macro, and Statistical Arbitrage, because of the central role price has to play in the
input data and predicted outcomes. Event strategies include Trend, Soft-Event, and Hard-Event
themes, because of the need to predict a change. Value strategies include Risk parity, Factor Investing
and Fundamental themes, because these measures estimate intermediary values not directly related
to the asset price.

Each trading theme can end up using different machine learning frameworks. For example,
Technical and Statistical Arbitrage strategies can use a supervised or reinforcement learning approach
or a combination of both, and Factor investing strategies can use a supervised or unsupervised
learning approach. The best labelling practice or naming convention for machine learning trading
strategies would be a combination of the trading theme, the method and the sub-method used. The
sub-method drives one level deeper than the machine learning frameworks; for a reinforcement
learning framework, the sub-method would for example be policy optimization, q-learning or model-
based approaches. In this article, I will not provide information on data processing techniques like
natural language processing, image and voice processing and feature generation; however, it should

4 This article's primary focus is on showing how machine learning can be used to develop trading strategies as
opposed to the performance of the trading strategies.

Electronic copy available at: https://ssrn.com/abstract=3420952

be noted that these techniques can form part of reinforcement, supervised, and unsupervised learning
frameworks.

 It is necessary to define the difference between the aforementioned themes. Technical
trading is the use of market data and its transformations to predict the future price of an asset. Trend
trading are strategies where one takes a position in the asset only after you predict a change in trend.
Statistical arbitrage seeks mispricing by detecting asset relationships and/or potential anomalies,
believing the anomaly will return to normal. Risk parity strategies diversifies across assets according
to the volatility they exhibit; when one asset class’s volatility exceeds another rebalancing can occur
by selecting individual units within each asset class or simply by using leverage. Event trading involves
the prediction of hard or soft financial events like corporate defaults, mergers and acquisitions, and
earnings surprises. Factor investing attempts to buy assets that exhibit a trait historically associated
with promising investment returns. Systematic global macro relies on macroeconomic principles to
trade across asset classes and countries. Fundamental trading relies on the use of accounting,
management and sentiment data to predict whether a stock is over or undervalued. In this section, I
will provide machine learning applications for some of these trading themes.

As soon as you have trained your machine learning model, you can decide whether you want
to use the model as part of a greater ensemble of models to create an improved final prediction model
that would be used for trading purposes. This ensemble of models can additionally pass through a
second supervised machine learning model that would decide on the most profitable model weighting
scheme, this is known as a stacked model. Once you have devised a few independently stacked trading
models, you can pass the proprietary model returns to an unsupervised-learning portfolio-weight-
optimization scheme like hierarchical risk parity for the final strategy allocation. It is currently feasible
to substitute a large portion of traditional algorithmic trading techniques with their machine learning
equivalents.

It’s possible to construct a strategy that ‘learns’ all the way down. For example, although one
can create one reinforcement learning agent that are able to ingest a lot of data and make profitable
decisions inside an environment, you are often better off to create more simple agents at the lower
level while pyramiding additional decision-making responsibilities upwards. Lower level agents can
look at pricing, fundamental and limited capital market data while a meta-agent can select or combine
strategies based on potential regime shifts that happen at the economic level and only make the
trading decisions then5.

A meta-learner can choose between a few hundred models based on the current macro-
regime. At the end, all the meta learners, or depending on how deep you go, meta-cubed learners,
should form part of the overall portfolio. The core function is to carry our portfolio level statistical
arbitrage to the outmost extreme using all the tools available financial or otherwise. You needn’t use
an additional level of reinforcement or supervised learning algorithms; you can also use unsupervised
clustering algorithms. You can discover multiple economic regimes by using k-nearest neighbours
(KNN) clustering, an unsupervised learning technique, to select the potential regime of the last 30-
days. Then one can select strategy by looking at the historic success across all regime types6.

Machine learning is ‘limitless’ in the sense that you can tweak it endlessly to achieve some
converging performance ceiling. Some of these tweaks include the different methods to perform
validation, hyperparameter selection, up-and down-sampling, outlier removal, data replacement, and
so on. Features can also be transformed in myriad ways; the dimensions of features can be reduced

5 As a result, it is not always necessary, nor optimal, to include all the data at the lower modelling level and it
therefore becomes an optimization question in itself to decide at what modelling level to use the data in your
hierarchical modelling structure.
6 While doing this, pay attention to the stability of clusters. The assignments might not persist in time series;
MiniBatch and Ward clustering algorithms tend to be more persistent.

Electronic copy available at: https://ssrn.com/abstract=3420952

or inflated; variables can be generated through numerous unsupervised methods; variables can also
be combined, added, or removed; models can be fed into models; and on top of that it is possible to
use all machine learning frameworks, i.e., supervised, reinforcement and unsupervised learning,
within a single prediction problem. The only way to know whether any of these adjustments are
beneficial is to test it empirically on validation data.

How do we know if any of these adjustments would lead to a better model? Most of the time
we can use proxies for potential performance like the Akaike information criterion (AIC), or feature-
target correlation. These approaches get us halfway towards a good outcome. The best approach is
to re-test the model each time a new adjustment is introduced. The tests should not be performed on
the data that would be used in testing the performance of the model, i.e. the holdout set; instead a
separate validation set should be specified for this purpose. It is also preferable to change the
validation data after each new empirical test to ensure that these adjustments do not overfit the
validation set; one such approach is known as K-Fold cross-validation where the validation set is
randomly partitioned into K equal-sized subsamples for each test.

In this article, I will survey a few ways in which machine learning can be used to enhance or
even create trading strategies. As stated, we are only limited by our imagination when devising
machine learning strategies. In this section, I will highlight nine different trading varieties that make
use of a reinforcement, supervised, unsupervised or a combination of learning frameworks. I named
these strategies Tiny RL, Tiny VIX CMF, Agent Strategy, Industry Factor, Global Oil, Earnings Surprise
Prediction, Deep Trading, Stacked Trading and Pairs Trading. I organised them according to machine
learning framework and each strategy is titled by name, theme, method, and sub-method.

Tiny CTA

Credit Man Group

Momentum refers to the persistence of returns. Winners tend to keep on winning and losers keep on
losing. In this momentum strategy, a CTA-momentum signal is built on the crossover signal of
exponentially weighted moving averages. One selects three sets of time-scales with each set
consisting of short and long exponentially weighted moving averages (EWMA), 2. 𝑆𝑘 =
(8,16,32), 𝐿𝑘 = (24,48,96). Each of these numbers translates in a decay factor that is plugged into
the standard definition of EWMA. The half-life is given by:

𝐻𝐿 =
log (0.5)

log (
𝑛 − 1
𝑛)

⁄

For each 𝑘 = 1,2,3 one calculate

𝑥𝑘 = 𝐸𝑊𝑀𝐴[𝑃|𝑆𝑘] − 𝐸𝑊𝑀𝐴[𝑃|𝐿𝑘]

The next step is to normalise with a moving standard deviation as a measure of the realised 3-months
normal volatility (PW=63)

𝑦𝑘 =
𝑥𝑘

𝑅𝑢𝑛. 𝑆𝑡𝐷𝑒𝑣[𝑃|𝑃𝑊]

The series is normalised with the realised standard deviation over the short window (SW=252)

𝑧𝑘 =
𝑦𝑘

𝑅𝑢𝑛. 𝑆𝑡𝐷𝑒𝑣[𝑦𝑘|𝑃𝑊]

Next one calculate an intermediate signal for each 𝑘 = 1,2,3 via a response function 𝑅

Electronic copy available at: https://ssrn.com/abstract=3420952

https://www.man.com/maninstitute/man-ahl

{

𝑢𝑘 = 𝑅(𝑧𝑘)

𝑅(𝑥) =
𝑥𝑒𝑥𝑝(−𝑥

2

4⁄)

0.89

Then the final CTA momentum signal is the weighted sum of the intermediate signal where we have

chosen equal weights, 𝑤𝑘 =
1

3

𝑆𝐶𝑇𝐴 = ∑𝑤𝑘𝑢𝑘

3

𝐾=1

For the first strategy, I did not include any actual machine learning adjustments, but I chose an
example where it is extremely easy to add. By identifying all the arbitrarily chosen parameters like
𝑆𝑘 , 𝐿𝑘,𝑎𝑛𝑑 𝑤𝑘 and optimising them using a reinforcement-learning algorithm one can venture to
improve the Sharpe ratio or simply the returns. See the next strategy for an implementation of a tiny
reinforcement-learning algorithm and see if you can apply the framework to this example.

Resources:

See this paper and blog for further explanation.

Data, Code

REINFORCEMENT LEARNING

Reinforcement learning (RL) in finance comprises the use of an agent that learns how to take actions
in an environment to maximise some notion of cumulative reward. We have an agent that exists in a
predefined environment, the agent receives as input the current state 𝑆𝑡 and is asked to take an action
𝐴𝑡 to receive a reward 𝑅𝑡+1, the information of which can be used to identify the next optimal action,
𝐴𝑡+1 given the new state 𝑆𝑡+1. The final objective function can be the realised/unrealised profit and
loss and even risk-adjusted performance measure like the Sharpe Ratio

Tiny RL

Credit Teddy Koker

In this example we will make use of gradient descent to maximise a reward function. The Sharpe ratio
will be used as the reward function. The Sharpe ratio is used as an indicator to measure the risk
adjusted performance of an investment over time. Assuming a risk-free rate of zero, the Sharpe ratio
can be written as:

𝑆𝑇 =
𝐴

√𝐵 − 𝐴2

Further, to know what percentage of the portfolio should buy the asset in a long only strategy, we can
specify the following function which will generate a value between 0 and 1.

𝐹𝑡 = 𝑡𝑎𝑛ℎ(𝜃
𝑇𝑥𝑡)

The input vector is 𝑥𝑡 = [1, 𝑟𝑡−𝑀 , … , 𝐹𝑡−1] where 𝑟𝑡 is the percent change between the asset at time
𝑡 and 𝑡 − 1, and M is the number of time series inputs. This means that at every step the model will
be fed its last position and a series of historical price changes that is used to calculate the next position.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2695101
https://www.linkedin.com/pulse/implement-cta-less-than-10-lines-code-thomas-schmelzer/
https://drive.google.com/open?id=12BB8KpFYJSx41yvHhtoLYE_ZZOHNamP8
https://drive.google.com/open?id=1EwbHhBZL_PRTphR25EbMQA9dV7jC4CjT
https://teddykoker.com/2019/06/trading-with-reinforcement-learning-in-python-part-ii-application/

Once we have a position at each time step, we can calculate our returns 𝑅 at each time-step using the
following formula. In this example, 𝛿 is the transaction cost.

𝑅𝑡 = 𝐹𝑡−1𝑟𝑡 − 𝛿|𝐹𝑡 − 𝐹𝑡−1|

To perform gradient descent, one must compute the derivative of the Sharpe ratio with respect to

theta, or
𝑑𝑆𝑇

𝑑𝜃
 using the chain rule and the above formula. It can be written as:

𝑑𝑆𝑇
𝑑𝜃

= ∑(
𝑑𝑆𝑇
𝑑𝐴

𝑑𝐴

𝑑𝑅𝑡
+
𝑑𝑆𝑇
𝑑𝐵

𝑑𝐵

𝑑𝜃
) . (

𝑇

𝑡=1

𝑑𝑅𝑡

𝑑𝐹𝑡

𝑑𝐹

𝑑𝜃
+
𝑑𝑅𝑡
𝑑𝐹𝑡−1

𝑑𝐹𝑡−1
𝑑𝜃

)

Resources:

See this paper and/or blog for further explanation.

Data, Code

Tiny VIX CMF

With Andrew Papanicolaou

CBOE Volatility Index (VIX) and Futures on the Euro STOXX 50 Volatility Index (VSTOXX) are liquid and
so are exchange-traded-notes/exchange-traded-funds (ETNs/ETFs) on VIX and VSTOXX. Prior research
shows that the future curves exhibit stationary behaviour with mean reversion toward a contango.
First, one can imitate the futures curves and ETN price histories by building a model and then use that
model to manage the negative roll yield. The Constant Maturity Futures (CMF) can be specified as
follows:

Denote 𝜃 = 𝑇 − 𝑡 to have constant maturity, 𝑉𝑡
𝜃 = 𝐹𝑡,𝑡+0, for 𝑡 ≤ 𝑇1 ≤ 𝑡 + 𝜃 ≤ 𝑇2 define

𝑎(𝑡) =
𝑇2 − (𝑡 − 𝜃)

𝑇2 − 𝑇1

Note that:

• 0 ≤ 𝑎(𝑡) ≤ 1
• 𝑎(𝑇1 − 𝜃) = 1 𝑎𝑛𝑑 𝑎(𝑇2 − 𝜃) = 0
• 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛 𝑡

The CMF is the interpolation,

𝑉𝑡
𝜃 = 𝑎(𝑡)𝐹𝑡

𝑇1 + (1 − 𝑎(𝑡))𝐹𝑡
𝑇2

where 𝑉𝑡
𝜃 is a stationary time series.

One can then go on to define the value of the ETN so that you take the roll yield into account. I want
to focus on maturity and instrument selection, and therefore ignored the roll yield and simply focused
on the CMFs. But, if you are interested, the value of the ETN can be obtained as follows.

Electronic copy available at: https://ssrn.com/abstract=3420952

http://cs229.stanford.edu/proj2006/Molina-StockTradingWithRecurrentReinforcementLearning.pdf
https://teddykoker.com/
https://drive.google.com/open?id=1CgwzyNqzizJYT8OxN9gD4f9t02gr7ghb
https://drive.google.com/open?id=1IRrR6kWjunERzZqrszJ9_q-C1Yj5L0Qj

𝑑𝑙𝑡
𝑙𝑡
=
𝑎(𝑡)𝑑𝐹𝑡

𝑇1 + (1 − 𝑎(𝑡))𝑑𝐹𝑡
𝑇2

𝑎(𝑡)𝐹𝑡
𝑇1 + (1 − 𝑎(𝑡))𝐹𝑡

𝑇2
+ 𝑟𝑑𝑡

where r is the interest rate.

Unlike the Tiny VIX CMF approach, this strategy makes use of numerical analyses before a
reinforcement learning step. First, out of all seven securities (J), establish a matrix of 1 and 0
combinations for simulation purpose to obtain a matrix of 27 − 2 = 126 combinations. Then use a
standard normal distribution to randomly assign weights to each value in the matrix. Create an inverse
matrix and do the same. Now normalise the matrix so that each row equals one in order to force
neutral portfolios. The next part of the strategy is to run this random weight assignment simulation N
(600) number of times depending on your memory capacity as this whole trading strategy is serialised.
Thus, each iteration (N) produces normally distributed long and short weights (W) that have been
calibrated to initial position neutrality (Long Weights = Short Weights); the final result is 15,600 trading
strategies.

The next part of this system is to filter out strategies with the following criteria. Select the top X
percent of strategies for their highest median cumulative sum over the period. From that selection,
select the top Y percent for the lowest standard deviation. Of that group, select Z percent again for
the highest median cumulative sum strategies. X, Y and Z are risk-return parameters that can be
adjusted to suit your investment preferences. In this example, they are set at 5%, 40% and 25%
respectively. It is possible to efficiently select these parameters by adding them to the reinforcement
learning action space. Of the remaining strategies, iteratively remove highly correlated strategies until
only 10 (S) strategies remain. With that remaining 10 strategies, which have all been selected using
only training data, use the training data again to formulise a reinforcement learning strategy using a
simple MLP neural network with two hidden layers to select the best strategy for the specific month
by looking at the last 6 months returns of all the strategies, i.e., 60 features in total. Finally test the
results on an out of sample test set. Note in this strategy no hyperparameters selection was done on
a development set, as a result, it is expected that results can further be improved.

Resources:

Data, Code

Free Agent

Evolutionary:

A large portion of reinforcement learning algorithms is optimised using Q-learning or its deep learning
equivalent, Deep-Q learning. There are ‘better’ algorithms out there such as policy gradient and its
variants like the Actor-Critic method. Although the Actor-Critic model performs well, it can take a very
long time to train. The reason reinforcement learning is so slow because the gradients are hard to find.
Unlike supervised learning, there is no clear gradient direction for each of the parameters in the
network. The gradient information appears occasionally when the environment gives a reward
(penalty). Most of the time the agent takes an action without knowing whether it is useful or not. The
reinforcement learning algorithm will be on a low error high reward surface and thus are more likely
to be initialised on a flat surface where it is hard to move towards better performance. It is not
presented with informative reward and penalty signals. In effect, the agent more or less performs a
random-walk for a long unproductive amount of tie. For some problems, it might feel like the policy-
gradient approach is no better than random search.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1Yv2_mTjZMANoL9fM0ajOsOFEc9MJZAMU
https://drive.google.com/open?id=186j-gtkXCgzj06WCWDAU9yhYXP9SfgLu

We can look to gradient-free approaches to reinforcement learning for help. Using genetic algorithms
one can find the parameters that best defines a good performing agent. You start with a certain
number of predefined agents (i.e. potential trading strategies) with randomly initialised parameters.
Some of them by chance will outperform others. Here is where the evolution comes to play and
resurrects the concept of the ‘survival of the fittest’. The algorithm selects the top performing decile
of agents and add a bit of Gaussian noise to the parameters so that in the next iteration the agent gets
to explore the neighbouring space to identify even better performing strategies. It is down to the core
a very simple concept. One can further improve these results by changing some of the input
parameters to the genetic algorithm for example the hyperparameters like the window size,
population size, variance, and learning rate. To do this one can make use of Bayesian optimisation. In
the notebook there are two models, the first is a simple evolutionary strategy agent and the second
makes use of Bayesian optimisation.

Resources:

Code and Data

Gradient Agent

Here, 20+ reinforcement learning sub-methods are developed using different algorithms, the first
three in the code supplement do not make use of RL; their rules are determined by arbitrary inputs.
This includes a turtle-trading agent, a moving-average agent, and a signal-rolling agent. The rest of the
coding notebook contains progressively more involved reinforcement learning agents. The notebook
investigates, among others, policy gradient agents, q-learning agents, actor-critic agents, and some
neuro-evolution agents and their variants. With enough time, all these agents can be initialised,
trained and measured for performance. Each agent individually generates a chart that contains some
of the performance information as shown in Exhibit 2.

Exhibit 2: Example of a Reinforcement Learning Strategy's Performance

In this section we will look at three of the most popular methods, being Q-learning, Policy Gradient,
and Actor-Critic. Some quick mathematical notes: s=states, a=actions, r=rewards. In addition, action
value functions Q, state-value functions V, and advantage functions A, are defined as:

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) = ∑ 𝐸𝜋𝜃[𝑟(𝑠𝑡′ , 𝑎𝑡′)|𝑠𝑡 , 𝑎𝑡]

𝑇

𝑡′=𝑡

𝑉𝜋(𝑠𝑡) = 𝐸𝑎𝑡~𝜋𝜃(𝑎𝑡|𝑠𝑡)
[𝑄𝜋(𝑠𝑡 , 𝑎𝑡)]

𝐴𝜋(𝑠𝑡 , 𝑎𝑡) = 𝑄
𝜋(𝑠𝑡 , 𝑎𝑡) − 𝑉

𝜋(𝑠𝑡)

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=116Aj9kbZcrCyR5MDu58HkWE53lacAE52

Then, 𝑉∅
𝜋̂(𝑠𝑡) is the fitted value function for 𝑉𝜋(𝑆𝑡)

Q-learning: is an online action-value function learning with an exploration policy, e.g., epsilon-greedy7.
You take an action, observe, maximise, adjust policy and do it all again.

Take some action 𝑎𝑖 and observe (𝑠𝑖 , 𝑎,𝑖 , 𝑠𝑖
′, 𝑟𝑖)

𝑦𝑖 = 𝑟(𝑠𝑖 , 𝑎𝑖) + 𝛾max
a′
𝑄𝜃(𝑠𝑖

′, 𝑎𝑖
′)

∅ ← ∅ − 𝛼
𝑑𝑄∅
𝑑∅

(𝑠𝑖 , 𝑎𝑖)(𝑄𝜃(𝑠𝑖 , 𝑎𝑖) − 𝑦𝑖)

Then explore with the epsilon-greedy policy:

𝜋(𝑎𝑡|𝑎𝑡) = {
1 − 𝜖 𝑖𝑓 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡𝑄𝜃(𝑠𝑡 , 𝑎𝑡)

𝜖/(|𝐴| − 1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Policy Gradients: here you maximise the rewards by taking actions where higher rewards are more
likely.

Sample {𝜏𝐼} from 𝜋𝜃(𝑎𝑡|𝑠𝑡)

∇𝜃𝐽(𝜃) ≈∑ (∑ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎𝑡
𝑖 |𝑠𝑡

𝑖))(∑ 𝑟(𝑠𝑡
𝑖 , 𝑎𝑡

𝑖))
𝑡𝑡𝑖

𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜃)

Actor-Critic is a combination of policy gradient and value-function learning. In this example, I will focus
on the online as opposed to the batch model.

Take action 𝑎 ~𝜋𝜃(𝑎|𝑠) , get (𝑠, 𝑎, 𝑠′, 𝑟)

Update 𝑉∅
𝜋̂ using target 𝑟 + 𝛾𝑉∅

𝜋̂(𝑠′)

Evaluate 𝐴𝜋̂(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾𝑉∅
𝜋̂(𝑠′) − 𝑉∅

𝜋(𝑠)̂

∇𝜃𝐽(𝜃) ≈ ∇𝜃𝑙𝑜𝑔𝜋𝜃(𝑎|𝑠)𝐴𝜋̂(𝑠, 𝑎)

𝜃 ← 𝜃 + 𝛼∇𝜃𝐽(𝜃)

Code and Data

7 Epsilon-greedy is very simple, keep track of the average pay-out of each strategy and select the strategy with
the highest current average pay-out. It is therefore an exploitative as opposed to an explorative policy.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1qCvIeui5dJKMXnjUm9_wiPf65VVHdWwz

Quantamental

In my experience, Quantamental strategies are intelligent data driven valuations. A good example of
a machine learning Quantamental strategy is a project I worked on in late 2017. The core goal of the
project was to estimate a fair valuation of privately-owned restaurant chains. A secondary
consequence of the project was the ability to predict whether a publicly traded restaurant was under
or overvalued. To do this alternative data was gathered at an employee, customer, shareholder and
management level for the parent companies and where possible the individual locations. In the
process, data was gathered from more than ten alternative sources using web-scrapers. This includes
LinkedIn, Yelp, Facebook, Instagram and Glassdoor data. What followed was the use of an open
sourced gradient boosting model from Yandex known as Catboost. In my final implementation I
preferred a model called XGBoost, this is not shown in the code. I give the mathematical definition of
the XGBoost model in the appendix. Both of these models are gradient boosting models (GBMs).

Here is how one might come to understand a GBM model. The algorithms for regression and
classification only differ in the loss function used and is otherwise the same. To create a GBM model
we have to establish a loss function, L to minimise, to optimise the structure and performance of the
model. This function has to be differentiable, as we want to perform a process of steepest descent,
which is an iterative process of attempting to reach the global minimum of a loss function by going
down the slope until there is no more room to move closer to the minimum. For the regression task,
we will minimise the mean squared error (MSE) loss function. The focus here is on 𝑓(𝒙𝑖) as this is the
compressed form of the predictor of each tree i.

 𝐿(𝜃) = ∑(𝒚𝒊 − 𝑓(𝑥𝑖))
2

𝑖

𝐿(𝜃) =∑(𝒚𝑖 − 𝑦 𝑖)
2

𝑖

Further, it is necessary to minimise the loss over all the points in the sample, (𝒙𝑖 , 𝑦𝑖):

𝑓(𝒙) =∑𝐿(𝜃)

𝑁

𝑖=1

𝑓(𝒙) =∑𝐿(𝑦𝑖 , 𝑓(𝒙𝑖))

𝑁

𝑖=1

At this point we are in the position to minimise the predictor function, 𝑓(𝒙𝑖), w.r.t. x since we want a
predictor that minimises the total loss of 𝑓(𝒙). Here, we simply apply the iterative process of steepest
descent. The minimisation is done in a few phases. The first process starts with adding the first and
then successive trees. Adding a tree emulates adding a gradient based correction. Making use of trees
ensures that the generation of the gradient expression is successful, as we need the gradient for an
unseen test point at each iteration, as part of the calculation 𝑓(𝒙). Finally, this process will return
𝑓(𝒙) with weighted parameters. The detailed design of the predictor, 𝑓(𝒙), is outside the purpose of
the study, but for more extensive computational workings see the appendix.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1b0OXiSKnacEDftYKgov619SCfXwpcUWT
https://drive.google.com/drive/folders/12aZ7vg_3HIdPYZ4GavYY7BjptlAPGFtc?usp=sharing

Among other things, the algorithm predicted that BJ’s restaurants market value was trading about
40% below its competitors with similar characteristics; within the year the algorithm was proven right
and the price just about doubled compared to its model-defined competitors. This project was
especially interesting because no company specific financial data was used as inputs to the model, and
the response variable was simply the market value. In the process, I also developed an interactive
report that is now open sourced. If you have a look at the report, the light blue line signifies what the
‘AI’ recommends the cumulative return should have been after 5 years, whereas the dark blue line is
the cumulative return over time for BJ’s; being about 40 percentage points lower than what the AI
believed to be a ‘fair’ market value. I am not going to make everything open for this project, but the
links below would give you some crumbsi.

Resources:

Web-scrapers, Data, Code, Interactive Report, Paper

Credit Rating Arbitrage

Three years ago, I was particularly interest in agency credit ratings. As one does, I developed a
prediction model to come to grips with the issues of the credit rating industry. The process involved
the training of an XGBoost model to predict companies’ credit ratings and then cross-sectionally
applying prediction to new companies to remove time bias and investigate rating discrepancies. In
other words, the companies’ actual rating are compared against their model predicted ratings; which
leaves you with firms that have deviated the most from learned patterns.

With this model and prediction in place, you can hypothesise that the divergence is either a true
reflection of a rating change to come, in which case you can establish a long-short portfolio to short
positive and long negative deviations and the literature clearly shows that a rating change has an
impact on the price of the company’s stock. This did not produce great results. Lastly, one can simply
call the difference soft credit risk – that which cannot be picked up by financials (the only input data
used), and then use that as another type of risk indicator for firms. This post-hypothesis did end up
working well. I haven’t formulised this theory and I am happy for anyone to pick this project up and
run with it.

The model has been shown to perform equivalent to that of a rating agency in predicting defaults.
This leads one to believe that rating agencies truly suffer from some revenue and other incentive
biases given that the model is fed only a small amount of data compared to that available to the
agencies. With this model in hand one can easily create a free only rating agency whereby you certify
peoples ratings using your models, all you need is 4 years financial data. With this model, unlike the
agency ratings, it is also possible to assign rating intervals as opposed to punctual ratings.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://github.com/firmai/interactive-corporate-report
https://github.com/firmai/interactive-corporate-report
https://drive.google.com/drive/folders/12aZ7vg_3HIdPYZ4GavYY7BjptlAPGFtc?usp=sharing
https://drive.google.com/open?id=1b0OXiSKnacEDftYKgov619SCfXwpcUWT
https://drive.google.com/open?id=1PqtFfcr1ejreGr6XIoZCs8jsD7AccuL7
https://github.com/firmai/interactive-corporate-report
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420490

Resources:

Code

Event Driven Arbitrage

Earnings Surprise

Here we investigate an earnings prediction strategy. It is a classification task where the response
variable for the machine learning model is the occurrence of an earnings surprise. An earnings surprise
is simply defined as a percentage change from the analyst's earnings per share (EPS) expectation and
the actual EPS that crosses a predefined threshold s. The percentage thresholds, s, expresses the
magnitude of the surprise.

X =
 𝐸𝑃𝑆𝐴𝐶𝑖𝑡−𝐸𝑃𝑆𝐴𝑁 𝑖𝑡

𝐸𝑃𝑆𝐴𝑁𝑖𝑡
 - 1

 𝑆𝑈𝑅𝑃𝑖𝑡𝑠𝑥 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑋 < −𝑆, Negative

𝑆𝑈𝑅𝑃𝑖𝑡𝑠𝑥 = 1, 𝑤ℎ𝑒𝑟𝑒 − 𝑆 ≤ 𝑋 ≤ 𝑆, Neutral

𝑆𝑈𝑅𝑃𝑖𝑡𝑠𝑥 = 2, 𝑤ℎ𝑒𝑟𝑒 𝑋 > 𝑆, Positive

To provide some clarity, i is the ith firm in the sample, t is the time of the quarterly earnings
announcement, s is the respective constant surprise threshold, x is a constant percentage of the
sample of earnings announcements sorted by date, EPSAN is analyst earnings per share consensus
forecast, and EPSAC is the actual earnings per share as reported by the firm.

Below is high-level pseudo code to provide a better understanding of some of the core concepts of
the developed black-box model and its relationship with the training set, test set, prediction values,
and metrics.

(1) 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡𝑇𝑟𝑒𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑇𝑟𝑎𝑖𝑛𝑋 , 𝑆𝑈𝑅𝑃𝑖𝑡𝑠(0 ∶ 𝑥) , 𝑉𝑎𝑙𝑖𝑑, 𝑃𝑎𝑟𝑎𝑚)

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1i_yERL4i6qp57C0LdSWEV8iYv_rtAZLF

(2) 𝑃𝑟𝑒𝑑𝑆𝑈𝑅𝑃𝑖𝑡ℎ = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑇𝑒𝑠𝑡𝑋)

(3) 𝑀𝑒𝑡𝑟𝑖𝑐𝑠 = 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠(𝑆𝑈𝑅𝑃𝑖𝑡𝑠(𝑥 ∶ 1), 𝑃𝑟𝑒𝑑𝑆𝑈𝑅𝑃𝑖𝑡ℎ)

Using the predictions, 𝑃𝑟𝑒𝑑𝑆𝑈𝑅𝑃𝑖𝑡ℎ you can expresses a simple strategy by going long (short) on
stocks that are expected to experience a positive (negative) surprise tomorrow (t), at closing today (t-
1), and liquidating the stocks at closing tomorrow (t). The stocks are equally weighted to maintain
well-diversified returns for the day, as there is, on average, only four firms in a portfolio of expected
surprises, but there can be as few as one firm in a portfolio. For each day, I form stocks into positive
and negative surprise prediction portfolios for surprises that deviate from -50% to 50% in order to
select the best performing threshold. The preferred threshold is selected based on tests done against
a validation set. The results in the validation set show that the best trading strategies exist between
5%-20%, with 15% being the optimal trading strategy for positive surprises.

The strategies recommended in this section fully invest all capital in each event. It is therefore
important to include some sort of loss minimisation strategy. As a result, one strategy incorporates a
stop-loss for stocks that fell more than 10%. Here 10% is only the trigger, and a conservative loss of
20% is used to simulate the slippage.

 𝑅𝑖𝑡 =
(𝑆𝑖𝑡 − 𝑆𝑖,(𝑡−1))

𝑆𝑖,(𝑡−1)
 , 𝑖𝑓

 𝑆𝑙𝑖𝑡 − 𝑆𝑖 ,(𝑡−1)

𝑆𝑖,(𝑡−1)
< −10%, 𝑅𝑖𝑡 = −20%

The equal weighted return of a portfolio of surprise firms is then calculated as,

 𝑅𝑝𝑡 =
1

𝑛
∑ 𝑅𝑖𝑡
𝑛𝑝𝑡
𝑖=1 , 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0, 𝑅𝑝𝑡 = 𝑅𝑀𝑡

In this equation 𝑖 is all the firms that experience surprises on date 𝑡. Therefore, 𝑅𝑖𝑡 is the return on
the common stock of firm i on date t. 𝑛𝑝𝑡 is the number of firms in portfolio p at the close of the

trading on date t-1. 𝑅𝑀𝑡 is the market return rate.

Electronic copy available at: https://ssrn.com/abstract=3420952

Exhibit 3: Portfolio Value 15% Surprise Prediction Strategy

Exhibit 3 reports the cumulative portfolio returns of buying and holding positive and negative surprises
predictions for all firms with a market value of $10 billion or more. On average, there are about four
firms for each portfolio day. On days where no trading surprises occur, a position in the market is
taken. The band in the middle is the 99% significance band obtained from 1000 Monte Carlo
simulations that randomly takes a position in firms before an earnings announcement. In total there
are 2944 trading days for the long strategy; 215 of these days are returns from earnings surprises
comprising 774 firms, and the rest are simple market return days.

 Resources:

Code, Paper

Bankruptcy Prediction

The bankruptcy task involved the acquisition of data that includes all corporate bankruptcies in the
US. A bankruptcy prediction model was created to predict these bankruptcies using only standardised
accounting information, one and two years before the bankruptcy occurs. The table below reports on
the outcome of the model by means of a confusion matrix.

Table 1: Healthy and Bankrupt Confusion Matrix.

Aggregated Health and Bankrupt
Firms Matrix

Predicted
Sample Proportion

Healthy Bankrupt

A
ct

u
al

 Healthy 29041 - TN 116 - FP 0.96

Bankrupt 805 - FN 258 - TP 0.03

Precision 0.97 0.69 30220

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Mkt 15% - Negative 15% - Positive Average

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1KtGauKizS8QISuDCW0SwIxbYPeBwTQxF
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420722

Improvement 0.01 0.66 -

This bankruptcy prediction task solves for a binary classification problem that produces a 2×2 matrix. The
columns of the matrix represent the predicted values, and the rows represent the actual values for bankrupt
and healthy firm predictions. In the cross-section of the rows and columns, we have the True Positive (TP),
False Negative (FN - type II error), False Positive (FP - type I error)), and True Negative (TN) values. The sample
proportion on the far right is equal to all the actual observations of a certain classification divided by all the
observations. The precision is calculated by dividing the true positives (Bankruptcies) with the sum of itself
and the false negatives (Healthy). An example along the second column: 258/(116 + 258) = 69%. The
improvement is the percentage point improvement the prediction model has over a random choice
benchmark.

The average ROC (AUC) of more than ten past decision tree ensemble studies (in literature: 2018) is
around 0.927. The best performing is 0.997 and the worst performing is 0.859. In spite of the
conservative sample selection in this chapter, the decision tree ensemble (XGBoost) model used in
this study performed better than the average of past reported studies. It is also the best model when
compared to other studies that only used accounting values as inputs. The average AUC of eight
different neural network studies is 0.850, the best and worst performing past study has an AUC of
0.901 and 0.750 respectively. The DCNN of this model achieved an AUC of 0.9142, making it the best
performing neural network of all past research.

Table 2: Model Comparison Using Different Inputs

 Metrics All Data 50 Variables
Model

One Year Before
Bankruptcy

Two Years Before
Bankruptcy

ROC AUC Sore 0.9587 0.9408*** 0.9666** 0.9434***

Accuracy Score 0.9755 0.9700 0.9860 0.9837

False Positive Rate 0.0037 0.0056 0.0010 0.0002

Average Log Likelihood 0.1414 0.1795 0.1682 0.2206

This table compares the performance of model that includes only 50 of the most predictive variables as inputs,
a model that only includes bankruptcy observations one or two years before the filing. All statistical comparisons
are made against the model called "All Data." *p<.1 ** p<.05 *** p<.01. Significance levels are based on a two-
tailed Z test.

Resources:

Data, Code, Paper

Filing Outcomes

Following on from the bankruptcy prediction strategy, this study further contends that past research’s
black-and-white view of solely predicting the occurrence of a legal bankruptcy is not sufficient; the
reason being that the economic effect of the outcome is largely determined by the characteristics
associated with the bankruptcy. Filing outcomes have great economic consequence for creditors and

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1UAIZBNHag-AdWZ4z7nd_y5THQ89D-IQh
https://drive.google.com/open?id=1Z2ZyvEoWsRfHSa1f7g0m1O-JiXedUdb_
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420889

shareholders. Stakeholders would want to know the likelihood of a litigated bankruptcy occurring as
well as the likely filing outcomes associated with the bankruptcy.

Binary Classification Performance for Predicting Bankruptcy Outcomes.

Binary

Classification

Model

ROC AUC
Sore

Accuracy
Score

Average
Log
Likelihood

Average
Precision
Score

False
Positive
Rate

False
Negative
Rate

Duration 0.62 0.56 0.67 0.69 0.66 0.26

Survival 0.73 0.69 0.59 0.80 0.61 0.12

Chapter 0.88 0.95 0.50 0.70 0.05 0.20

Asset Sale 0.64 0.66 0.61 0.39 0.27 0.55

Tort 0.54 0.90 0.40 0.17 0.05 0.83

This table reports six important metrics for five alternative classification tests to predict the outcome of
predicted bankruptcies. Duration classification is the first task to predict the binary outcome. This task involves
the prediction of whether or not the disposition will take longer than a year after the initial filing. Survival
predicts a binary outcome as to whether or a firm will re-emerge out of bankruptcy and remain in business for
longer than 5 years. The Chapter task predicts whether the bankruptcy filing would be converted to Chapter 7
or whether it will be a Chapter 11 filing. The Asset Sale model predicts whether the debtor will sell all or
substantially all the assets during the Chapter 11 proceedings. The Tort classification task seeks to predict
whether the bankruptcy would occur as a result of tortious actions such as product liability, fraud, pension,
environmental and patent infringement claims. The above metrics have been fully defined in table X.

The prediction of all filing outcomes is contingent on a correctly predicted bankruptcy outcome. All
these models use simple accounting value inputs the year before the filing date. Filing outcomes have
great economic consequence for creditors and shareholders. Stakeholders would want to know the
likelihood of a litigated bankruptcy occurring as well as the likely filing outcomes associated with the
bankruptcy. In the table below, I present the performance of five different filing outcome models.

The first of these five is the chapter prediction model. It involves a prediction task of whether the
bankruptcy will finally be filed under chapter 7 or chapter 11. The chapter prediction model performed
the best of all other filing outcomes models. It achieved an AUC of 0.88. The survival prediction model
that identifies whether the firm would emerge from bankruptcy performed second best with an AUC
of 0.73. The prediction task that attempts to predict whether assets will be sold in a 363 Asset sale or
by other means, came in third with an AUC of 0.64. The duration task, which involves the prediction
of whether the bankruptcy proceedings would endure for longer than one year came in second to last
with an AUC of 0.62. And lastly, the tort task had an AUC score of 0.54 which is only slightly higher
than random. All prediction tasks performed better than random guessing.

Resources:

Data

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1cDhrrAp07e-2TgrPQginXUNQpdbTpq-u

Statistical Arbitrage:

Pairs trading is a simple statistical arbitrage strategy that involves finding pairs that exhibit similar
historic price behaviour and then to, once they diverge, bet on the expectation that they will

convergence. In a universe of assets over time, 𝑿𝑡, pick individual assets, 𝑋𝑡
𝑥, so that 𝑐𝑜𝑟𝑟(𝑋𝑡

𝑥1 , 𝑋𝑡
𝑥2)

exceeds some threshold 𝑃. We can let 𝑋𝑡
1 and 𝑋𝑡

2 denote the prices of two correlated stocks, if we
believe in the mean-reverting natureii and the ground truth of the shared correlation, we can initiate
a mean-reverting process (𝑍𝑡) as follow, 𝑍𝑡 = 𝑋𝑡

1 −𝐾0𝑋𝑡
2, where 𝐾0, is a positive scalar such that at

initiation 𝑍𝑡 = 0.

This mean reverting process, i.e., the change in mean, is governed by 𝑑𝑍𝑡 = 𝑎(𝑏 − 𝑍𝑡)𝑑𝑡 +
𝜎𝑑𝑊𝑡 , 𝑍0 = 0, where 𝑎 > 0 is the rate of reversion, 𝑏 the equilibrium level, 𝜎 > 0 the volatility, and
𝑊𝑡 the standard Brownian motion. This Brownian motion exists within the mean-reverting process,
hence it can’t have drift. 𝑍𝑡 is thus the pairs position, 1 share long in 𝑋𝑡

1, 𝐾0 shares short in 𝑋𝑡
2 and 𝑑𝑍𝑡

describes the underlying dynamic under strict mathematical assumptions.

Given the construction, we expect the prices of assets to revert to normal. We can specify an easy and

arbitrary trading rule, which specifies that when 𝑎𝑏𝑠(𝑋𝑡
1 − 𝐾0𝑋𝑡

2)/(
1

𝑛
∑ 𝑎𝑏𝑠(𝑋𝑡

1 − 𝐾0𝑋𝑡
2))𝑛

𝑡=1 > 0.1,

you sell the highly priced asset and buy the lowly priced asset, and do the reverse as soon as the above
formula hits 0.5; at which point you assume that this might be the new natural relational equilibrium.
In practice we also impose additional state constraints, for example, we require, 𝑍𝑡 ≥ 𝑀, where 𝑀 is
the stop loss-level in place for unforeseeable events and to satisfy a margin call, further alterations
should include transaction and borrowing costs. Pair selection and trading logic can be much more
involved than the above. Instead of using simple trading rules, dynamic model based approaches can
be used to define the trading logic. The before mentioned mean reversion process can be discretised
into an AR process where the parameters can be estimated iteratively and used in the trading rule.

Researchers can do pair selection using distance, rolling OLS cointegration, or Kalman filter
cointegration. Unsupervised learning methods like, hierarchical clustering, k-means, VAE embedding
or DBSCAN have also been used with mixed success. Although unsupervised learning methods might
not be the best method to directly select pairs from, it is a good intermediate step to create clusters
out of which traditional pairs selection strategies can be used. For example, see the following
notebook from Yicheng Wang for the available code (data not provided) that uses DBSCAN and PCA.
Finally in the last step one can make use of an RL agent to identify the best enter and exit
opportunities, i.e., using an RL agent to define the trading rules. I am yet to connect unsupervised
learning with reinforcement learning. I would leave it out there for others to do. I have developed a
model here, without any strategy attached. If I do come back to this project, I would not use this
model. I would start from scratch, building the unsupervised step into the strategy from the start. If
you are even more adventurous, have a look at the following code and data for an options arbitrage
(code, data) and treasury future trading strategies (code, data; by Raphael Douady), and see if you
are able to identify how you would be able to include a reinforcement-learning agent.

Unsupervised Strategy

Mixture Models

Credit: Brian Christopher.

The evidence shows that asset returns violate all the rules of stationarity. For a time series to be
stationary it should have a constant mean, variance and covariance with leading or lagged values and
the SPY returns exhibit nonstationarity in the mean, variance and demonstrate periods of variable
autocorrelation. You can plot the data to see if the mean and variance is constant and do the Dicky
Fuller test for a unit root.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1sD6qLkDqxKjOknvPR-5HxvFq6765cbxM
https://drive.google.com/open?id=1QknCC_rfTm8eqa3-oo3bK3GXCTEOLIOH
https://drive.google.com/open?id=1dG6auOJGwtcz7eQHgA3aW2M0N9DO6Jfk
https://drive.google.com/open?id=16EtGLGru4eG--qwxN3ejtfHwBY4H7PSZ
https://drive.google.com/open?id=1aOZ21Yl3r_lDWzyuYu8lv46fn3g-NsYa
https://drive.google.com/open?id=1atPj__ovC6WF4Ems4B3mjPsYd2SQ6OtZ
https://www.linkedin.com/in/bcrblackarbs

As a result we should expect predictions approximated by normal distribution measures like mean and
variance to badly predict the future return distribution. Luckily this can also be tested like stationarity
that be tested. In fact there is a test called the Komogorov-Smirnov 2 sample test that can be used to
compare a test and predicted distribution. It provides a small p-value if there are strong evidence that
the two data samples came from different distributions. However, the test is more commonly used to
test the test and training samples themselves, which is what is done in the notebook. The results from
the test shows that 70% of the train test splits reject the null hypothesis that the training and test data
came from the same distribution. As a result, we need a modelling framework that can overcome
these issues. Techniques that cannot accommodate the time varying properties of financial asset
returns present a risk to our financial assets.

GMM model can help overcome some of the times series prediction issues as it as an approach to
approximate nonstationary distributions. Our biggest issue is that asset returns seems to be comprised
from multiple distributions (regimes or states). Each regime has its own composition of characteristics
like stable, risky, low and high volatility. If we argue that there is two regimes, stable and risk, we sit
with the issue that we don’t know the mean and variance parameters for the regimes, because we
invariably don’t know which datapoint comes from which regime. Fortunately, there is a solution to
this problem, the devised solution is an expectation-maximisation algorithm. The expectation-
maximisation algorithm underpins many unsupervised learning methods including that of mixture
modelling. It has use cases for when data is corrupted, missing or the parameters of the data
generating process is unknown and lastly where it is not known which data generating process
generated which data point.

You start by guessing the parameters for the two different gaussian distributions you believe the time
series exhibits. Assuming you are correct, you assign probability weights to each datapoint from both
of the regimes. Then in an iterative process, we normalise the probabilities and estimate the
parameter means and volatilities of the regimes. With this approach, we are guaranteed to improve

the estimate at each iteration. 𝐸(𝑧𝑖𝑗) is the probability that 𝑥𝑖 was drawn from the 𝑗𝑡ℎ distribution.

𝐸(𝑧𝑖𝑗) =
𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇𝑗)

∑ 𝑝(𝑥 = 𝑥𝑖|𝜇 = 𝜇𝑗)
2
𝑛

=
𝑒
−
1
2𝜎2

(𝑥𝑖−𝜇𝑗)
2

∑ 𝑒
−
1
2𝜎2

(𝑥𝑖−𝜇𝑛)
2

2
𝑛=1

The formula simply states that the expected value for zij is the probability 𝑥𝑖 given 𝜇𝑗 divided by the

sum of the probabilities that 𝑥𝑖 belonged to each 𝜇. After calculating all expected values 𝐸(𝑧𝑖𝑗) we

can update the new 𝜇 values.

𝑢𝑗 =
∑ 𝐸(𝑧𝑖𝑗)𝑥𝑖
𝑚
𝑖=1

∑ 𝐸(𝑧𝑖𝑗)
𝑚
𝑖=1

This formula generates the maximum likelihood estimate. By repeating the expectation and
maximisation steps, we are guaranteed to find a local maximum giving us the maximum likelihood
estimation of our hypothesis. One question that has to be resolved is the number of components or
regimes to select. Here we can make use of AIC or IC criterion to compare the relative suitability of
different models. With the GMM model, we can sample directly from the posterior to generate new
samples.

Electronic copy available at: https://ssrn.com/abstract=3420952

Now that we know what the model is, how do we apply it? Well one can use it for a range of tasks like
classifying returns as outliers for filtering and data cleaning. One can use it in risk management to filter
position sizes, trades, veto trades. For example if we predict a volatile regime going forward, we might
want to reduce potion sizing.

In this example, I specifically use GMMs to predict return distributions. We can use it to predict
iteratively the distribution of our lookahead period. What the results in this study show is that the
accuracy of the return distribution is better with less components. This leads one to question the use
of a mixture model. In a further step, we can use a mixture model to implement an event study on
post outlier returns. The analysis appears to show that there is a tradeable pattern based on our
filtering conditions.

Resources:

Data, Code

Pairs Trading

Pairs trading is a simple statistical arbitrage strategy that finds pairs that exhibit similar historic price
behaviour, and then, once they diverge, betting on the expectation that they will convergen. With
unsupervised learning methods, we can add an extra safeguard by selecting stocks that are structurally
similar. In a universe of assets over time, 𝑿𝑡, identify 𝑲𝑡 features that help to define the characteristic
of the company. One can use features such as the price to earnings ratio, dividend yield, return on
assets as well as some market based data like lagged returns and technical indicators.

You can then use the data to perform K-mean clustering to reduce the distance between data-points
around a predefined number of clusters. Within each cluster pick the respective assets 𝑋𝑡

𝑥, so that

𝑐𝑜𝑟𝑟(𝑋𝑡
𝑥1 , 𝑋𝑡

𝑥2) exceeds some threshold 𝑃. We can let 𝑋𝑡
1 and 𝑋𝑡

2 denote the prices of two correlated
stocks, if we believe in the mean-reverting nature and the ground truth of the shared correlation, we

can initiate a mean-reverting process (𝑍𝑡) as follow, 𝑍𝑡 = 𝑋𝑡
1 − 𝐾0𝑋𝑡

2, where 𝐾0, is a positive scalar
such that at initiation 𝑍𝑡 = 0.

This mean reverting process, i.e., the change in mean, is governed by 𝑑𝑍𝑡 = 𝑎(𝑏 − 𝑍𝑡)𝑑𝑡 +
𝜎𝑑𝑊𝑡 , 𝑍0 = 0, where 𝑎 > 0 is the rate of reversion, 𝑏 the equilibrium level, 𝜎 > 0 the volatility, and
𝑊𝑡 the standard Brownian motion. This Brownian motion exists within the mean-reverting process;

hence it can’t have drift. 𝑍𝑡 is thus the pairs position: 1 share long in 𝑋𝑡
1 and 𝐾0 shares short in 𝑋𝑡

2;
and 𝑑𝑍𝑡 describes the underlying dynamic under strict mathematical assumptions.

Given the construction, we expect the prices of assets to revert to normal. For all the clustered pairs
we can specify an easy and arbitrary trading rule, which specifies that if 𝑎𝑏𝑠(𝑋𝑡

1 − 𝐾0𝑋𝑡
2)/

(
1

𝑛
∑ 𝑎𝑏𝑠(𝑋𝑡

1 − 𝐾0𝑋𝑡
2))𝑛

𝑡=1 > 0.1, then you sell the highly priced asset and buy the lowly priced asset,

and you do the reverse as soon as the above formula hits 0.5, whereby you assume that this might be
the new natural relational equilibrium. In practice we also impose additional state constraints, for
example, we require, 𝑍𝑡 ≥ 𝑀, where 𝑀 is the stop loss-level in place for unforeseeable events and to
satisfy a margin call, further alterations should include transaction and borrowing costs.

Pair selection and trading logic can be much more involved than the above. Instead of using simple
trading rules, dynamic model-based approaches can be used to define the trading logic. The before
mentioned mean reversion process can be discretised into an AR process where the parameters can
be estimated iteratively and be used in the trading rule, this is called the Stochastic Spread Method.

And instead of performing the final pair selection using distance, rolling OLS cointegration, or Kalman
filter cointegration, unsupervised learning methods like, hierarchical clustering, K-means, VAE

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1jmR2Jlk6Hy7J7c2jZFEK1oXptOHbDYLK
https://drive.google.com/open?id=1tRIt7lIJErWKwoHIuBS6rZbZo2EYBNTN

embedding or DBSCAN8 can be used. Although unsupervised learning methods might not be the best
method to directly select pairs, it is a good intermediate step to create clusters with K-means or out
of which traditional pairs selection strategies can be used.

SUPERVISED LEARNING:

I have not turned any of the supervised learning methods into trading strategies yet. Here I am simply
predicting the price of the stock a few days in advance, so the models can easily be transformed into
directional trading strategies from this point. You can construct the trading policies by hand or rely on
reinforcement learning strategies to ‘develop’ the best trading policies.

Supervised learning (SL) techniques are used to learn the relationship between independent attributes
and a designated dependent attribute. SL refers to the mathematical structure describing how to
make a prediction 𝒚𝒊 given 𝒙𝒊. Instead of learning from the environment like RL, SL methods learn the
relationships in data. All supervised learning tasks are divided in classification or regression tasks.
Classification models are used to predict discrete responses (e.g., Binary 1, 0; Multi-class 1, 2, 3).
Regression is used for predicting continuous responses. (e.g., 3.5%, 35 times, $35,000). In the
examples that follow, we will both use classification and regression models.

Industry Factor Investing

In this example, we will look at the use of machine learning tools to analyse industry return
predictability based on lagged industry returns across the economy (Rapach, Strauss, Tu, & Zhou,
2019). A strategy that longs the highest and shorts the lowest predicted returns, returns an alpha of
8%. In this approach, one has to be careful about multiple testing and post-selection bias. A LASSO
regression9 is eventually used in a machine learning format to weight industry importance; but before
that we should first formulate a standard predictive regression framework:

𝒚𝒊 = 𝑎𝑖
∗𝜸𝑻 + 𝑿𝒃𝒊

∗ + 𝜺𝒊 𝑓𝑜𝑟 𝑖 = 1,… , 𝑁,

where

𝑦 = [𝑟𝑖,1…𝑟𝑖,𝑇] ; 𝑋 = [𝑥1…𝑥𝑁] ; 𝑥𝑗 = [𝑟𝑖,0…𝑟𝑖,𝑇−1] 𝑓𝑜𝑟 𝑗 = 1,… , 𝑁

𝑏𝑖
∗ = [𝑏𝑖,1

∗ …𝑏𝑖,𝑁
∗] ; 𝜀𝑖 = [𝜀𝑖,1…𝜀𝑖,𝑇]

In addition, the lasso objective (𝜸𝑻) can be expressed as follows, where 𝜗𝑖 is the regularisation
parameter.

arg𝑚𝑖𝑛
𝑎1∈𝑹,𝑏𝑖∈𝑅

𝑁
(
1

2𝑇
||y

i
− 𝑎𝑖𝜸𝑻 − 𝑿𝒃𝒊||

𝟐

𝟐
+ 𝜗𝑖||𝒃𝒊||𝟏)

The LASSO regression generally performs well in selecting the most relevant predictor variables. Some
argue that the LASSO penalty term over shrinks the coefficient for the selected predictors. In that
scenario, one can use the selected predictors and re-estimate the coefficients using OLS. This sub
model – an OLS regression model in this case – can be replaced by any other machine learning
regressor. In fact, the main and sub-model can both be machine learning regressors, the first selecting
the features and second predicting the response variable based on those features.

8 Density-based spatial clustering of applications with noise.
9 Lasso regressions shrink regression coefficients towards zero to encourages simple sparse models.

Electronic copy available at: https://ssrn.com/abstract=3420952

For additional practice, you can have a look at the following repositories and see if you can identify
any machine learning use cases. Factor analysis: 1. Mutual fund factors (data), 2. Equity factors (data),
3. Penalised factors.

Resources:

Paper, Code, Data

Stacked Trading

This is purely experimental, it involves the training of multiple models (base-learners or level 1
models), after which they are weighted using an extreme gradient boosting model (metamodel or
level 2 model). In the first stacked model, which I will refer to as EXGBEF, we use autoencoders to
create additional features. In the second model, DFNNARX, autoencoders are used to reduce the
dimensions of existing features. In the second model, I include additional economic (130+ time series)
and fund variables to the stock price variables. Similar to the Deep Trading example, we have price
movement predictions, but we have not developed a trading policy yet. Exhibit 5 graphically shows
the concept of stacking.

Exhibit 5: Architecture of Stacked Models

The training data X has m observations, and n features. There are M different models that are trained
on X. Each model provides predictions ŷ for the outcome y which are then cast into a second level

training data 𝑋(𝑙2) which is now m x M sized. The M predictions become features for this second level
data. A second level model (or models) can then be trained on this data to produce the final outcomes
ŷfin which will be used for predictions. With stacking it can help to use out-of-sample training data at
each modelling level, otherwise the nth level model will be biased to use only the best performing
model in the previous modelling level.

Resources:

Code and Data, Blog

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1GwRrAY_oM2CD9dc6hehqfynqSFq50kxv
https://drive.google.com/open?id=1YP_ayHuGzedemXnPxTR_5zEneISdD7ku
https://drive.google.com/open?id=1cfrA3MuhJYUjfa8Yxvm2pcTbSNqPdNS6
https://drive.google.com/open?id=1fS9aNgOcN4L7cLmSTbBZfowr56tfEzcm
https://drive.google.com/open?id=1OmqcjSwGkk7yurPUsc0G3afUBncHxM2B
https://docplayer.net/120877135-Industry-return-predictability-a-machine-learning-approach.html
https://drive.google.com/open?id=1O0LQ_khTfsbFG5aN3-AqV6DEIRWQ6UuP
https://drive.google.com/open?id=1cc43729RyOPCsDJ3r46SdHcJJp1AUmaA
https://drive.google.com/open?id=11SG9KIWUxV9fgrrpAs0QifgGrcdzk2dh
https://www.kdnuggets.com/2017/02/stacking-models-imropved-predictions.html

Deep Trading

There are 30 different neural network sub-methods investigated here. This includes Vanilla RNN, GRU,
LSTM, Attention, DNC, Byte-net, Fairseq, and CNN methods10. The mathematics of the different
frameworks are vast and would take too much space to include here. I have not turned any of the
methods into trading strategies yet. Here, I am simply predicting the future price of the stock, so the
models can easily be transformed into directional trading strategies from this point. You can construct
the trading policies by hand or rely on reinforcement learning strategies to ‘develop’ the best trading
policies.

Exhibit 4: Architecture of RNN, GRU and LTSM cells.

Exhibit 4 can help us to understand the major differences between the sub-methods. A Vanilla
recurrent neural network (RNN) uses the simple multiplication of inputs (𝒙𝒕) and previous outputs
(ℎ𝑡−1) passed through a tanh activation function. A Gated Recurrent Unit (GRU) introduces the
additional concept of a gate that decides whether to pass a previous output (ℎ𝑡−1) to a next cell in an
attempt to solve the vanishing gradient problem11. It is simply an additional mathematical operation
performed on the same inputs. With the Long Short-Term Memory Unit (LSTM) an additional gate is
introduced to the GRU method. Again, these are additional mathematical operations on the same
inputs. Moving from RNN to LSTM we are simply introducing more 'control knobs' for the flow and
mixing of input data to establish the final weights. The LSTM method is designed to focus on
establishing weights that maintain information that persist for longer periods of time. The code of
these three methods and many others are available in the online supplement.

Resources:

Code and Data

Systematic Global Macro

When oil exits a bear market then the currency of oil producing nations should also rebound. With
this strategy, we will investigate the effect the price of oil has on the Norwegian krone (NOK) and
identify whether a profitable trading strategy can be executed. To start we need a ‘stabiliser currency’
to regress against. The currency should be unrelated to the currency under investigation. Something

10 Listed in order: Recurrent Neural Network, Gated Recurrent Unit, Long short-term memory,
Attention Mechanism, Differentiable Neural Computer, Byte-net, Fairseq, Convolutional Neural Network.
11 A difficulty found in artificial neural networks that may completely stop the neural network from training
further.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1NoSOI29giC3zOeWNMGQCUUQCRXemD9Ix

like the Japanese yes (JPY) is a good candidate. From here on, one would use the price of the NOK and
Brent as measured against JPY to identify whether the Norwegian currency is under or overvalued. I
will use an elastic net regression as the machine learning technique. It is a good tool when
multicollinearity is an issue.

An elastic net is a regularised12 regression method that combines both L1 (Lasso) and L2 (Ridge)
penalties13. The estimates from the elastic net method are defined by.

𝛽̂ = 𝑎𝑟𝑔𝑚𝑖𝑛⏟
𝛽

(||𝑦 − 𝑋𝛽||
2
+ 𝜆2||𝛽||

2
+ 𝜆1||𝐵||1)

The loss function becomes strongly convex as a result of the quadratic penalty term therefore
providing a unique minimum. Now that the predictors are in place, one has to set up a pricing signal;
one sigma two-sided is the common practice in arbitrage. We short if it spikes above the upper
threshold and long on the lower threshold. The stop-loss will be set at two standard deviations. At
that point, one can expect the interpretation of the underlying model to be wrong and therefore
choose to exit the position.

The elastic net has also usefully been applied in portfolio optimisation. Here, I have applied the two
other well-known regularised linear models to portfolio optimisation.

Resources:

Data, Code

Supervised Learning vs Reinforcement Learning

The general pipeline for supervised machine learning trading involves the acquisition of data,
processing of data, prediction, policy development, backtesting, parameter optimization, live paper
simulation and finally trading of the strategy. The basic supervised learning task involves some form
of price prediction. This includes regressors that predict the price level and classifiers that predict price
direction and magnitude in predefined classifications for future time steps. Supervised machine
learning models, especially neural networks, can keep up with changing market regimes as long as it
is able to do online training1. The reason supervised learning processes tend to fail is because the
iterative steps from ML prediction through to policy development, backtesting and parameter
optimization are fragile, slow and prone to error. A further issue is that the performance simulation
turns up too late in the game after much hard work has been done. Also, the policy does not develop
‘intelligently’ with the machine learning model.

The benefit of reinforcement learning algorithms is that the final objective function can be the
realised/unrealised profit and loss, but also values like the Sharpe Ratio, maximum drawdown, and
value at risk measures. Reinforcement learning only has four or so steps as opposed to the seven or
eight of supervised learning. RL allows for end-to-end optimization on what maximises rewards. The
RL algorithm directly learns a policy. RL has to take an action in an interactive environment. Compared
to supervised learning which answers the question, "will the asset increase in price tomorrow?";
reinforcement learning answers the question, "should I buy the asset today?". The reinforcement
learning algorithm is therefore already packaged as a trading strategy. This does not mean that it is

12 Regularisation is any method that decreases the complexity of the model with the hope of improving its out
of sample performance.
13 The biggest difference between L1 and L2 is that L1's penalty is equal to the absolute value of the coefficient
and L2's penalty is equal to the square of the magnitude; as a result, L1 can eliminate coefficients and L2 can
only shrink coefficients without eliminating them.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://pdfs.semanticscholar.org/6081/4c0450d453169045500d9299b458998a3540.pdf
https://drive.google.com/open?id=1bZAwb6_X4UjdqDPqKMNJFxfBliN1HZXY
https://drive.google.com/open?id=1ePKFtfjBrfg3xDtg_dbssykeSd8ZmA1z
https://drive.google.com/open?id=10bN3kNjl9EMDB5Tt1ArXO8IaxLiPh_Zd

necessarily hard to create a trading strategy out of a supervised learning task, for example, one can
simply buy all assets that are predicted to increase in price tomorrow.

Therefore, the reinforcement learning process draws on a larger process of automation. Similar to
supervised strategy development, you still have to ensure that the model works, here instead of
backtesting you use a simulated environment or paper trading. Remember that the focus should
remain on out-of-sample performance at the end of the day, so be sure to deflate your performance
metrics appropriately to control for multiple-testing. In a nutshell, RL comprises data analysis, agents
training in a simulated environment, paper trading, and then finally live trading. In each of the last
three steps the agent gets exposed to an environment. The simplest RL approach is a discrete action
space with three actions, buy, hold, and sell. Unlike supervised models, reinforcement models specify
an action as opposed to a prediction, however the decision masks an underlying prediction.

So, if RL provides all these miraculous benefits, why is it barely used in industry. Well even though RL
can lead to a great strategy in fewer steps with less human involvement, it takes longer to train and is
very computationally intensive. RL needs a lot of data, even more so than supervised machine
learning. It can also be expensive to test if you can’t reconstruct a good simulated environment. In
finance this is mostly not a big issue, but this does become an issue when accurate environment
feedback is necessary; in which case you might have to revert to the real environment when the
simulated environment won’t cut it; in which case it can become very expensive. Lastly, the bigger the
action space the harder it is to optimise an RL agents14.

It is likely that supervised learning would still rule the pack in the foreseeable future. Supervised
learning is already quite flexible, and we should expect to see a lot of innovations to bring the
experience of developing strategies closer to that of reinforcement learning without forsaking the
benefits of supervised learning. For example, researchers in SL have for a long time looked at
embedding policy decisions into SL algorithms. Researchers in finance have also written about creating
models that predict the best position sizes and entry and exit points (de Prado, 2018). Bringing the
trading policy and rules closer to the ML model and closer to a form of automated intelligence.

Let us consider a few more disadvantages of reinforcement learning. First, RL’s convergence to an
optimal value is not guaranteed; the famous Bellman update can only guarantee the optimal value if
every state is visited an infinite number of times and every action is tried an infinite amount of times
within each state, so essentially never. You of course don’t need a truly optimal value; approximate
optimality is fine. The big issue is that the sample size needed to obtain a good level of approximate
optimality increases with the size of the state and action space. Further, without any assumptions
there is no better way than to explore the space randomly, so progress at first is small and slow.
Continuous states and actions are a serious problem; how are we supposed to visit an infinite number
of states, an infinite number of times for an infinite number of continuous values with small and slow-
time steps?

Some of the best approximations can only be done through the generalised nature of supervised
learning. Generalisation can also be adopted in RL using function approximation as opposed to storing
infinite values in an infinitely large table. It is worth nothing that this function approximation is still
orders of magnitude harder than normal supervised learning problems, the reason being that you start
the model off with no data, and as you collect data the action value changes and the ground truth
labels also remain unfixed; a point previously labelled as good, might look bad in the longer run. To
get closer to the true function, the agent has to keep exploring. This exploration in uncertain dynamics
means that RL is way more sensitive to hyper-parameters and random seeds than SL as it does not
train on a fixed data set and is dependent on network output, exploration mechanism, and
environment randomness. Thus, the same run can produce different results. But do notice how great

14 Not to mention the ridiculously slow optimization concerning for continuous as opposed to discrete action
space.

Electronic copy available at: https://ssrn.com/abstract=3420952

it is that you are never given any samples from the ‘true’ target function, yet you are able to learn by
optimising on a goal, that is why RL is so popular.

I simultaneously expect to see a lot of improvement on the RL trading front, so that RL adopts the
advantages of SL trading methods while not forgoing its own strengths. Conceptually RL offers a kind
of paradigm shift where we are not overtly focused on predictive power, which is an auxiliary task,
but rather the optimization of actions which is and has always been the primary goal. SL and RL
algorithms indirectly pick up on well-known trading strategies without having to predefine and identify
them. For example, the gradient step that leads the machine agent to buy more of what did the best
yesterday are indirectly creating a momentum investing strategy. We can expect machine learning to
become part of the toolkit of all asset managers in the future.

Around 40 years ago Richard Dennis and William Eckhardt put systematic trend following systems on
a roll, 15 years later statistical arbitrage made its way onto the scene, 10 years later high frequency
trading started to stick its head out, in the meantime, machine learning tools was introduced to make
statistical arbitrage much easier and more accurate. Machine learning today, among other things,

assist investment managers to refine the accuracy of their predictions ⁠—by using supervised learning,

improve the quality of their decisions ⁠—by using reinforcement learning, and enhance their problem

discovery skills⁠—by using unsupervised learning.

Technological adoption within portfolio management moves fast and over the decades we have seen
technologies come and go. It is likely that this cycle in quantitative finance will persist and that it also
applies to machine learning in asset management, with one caveat, machine learning is also practically
revolutionary, instead of just maximising alpha it also minimises overheard costs. Machine learning is
already having large economic effects on many financial domains and it is poised to grow further.
Advanced machine learning models present myriad advantages in flexibility, efficiency, and enhanced
prediction quality.

In this part of the article we have paid special attention to how machine learning can be used to
improve various types of trading strategies. We started by identifying important components to asset
management in the context of machine learning, one of which is portfolio construction, which itself
was divided into trading and weight optimization sections. The trading strategies were classified
according their respective machine learning frameworks, i.e., reinforcement, supervised and
unsupervised learning. The article finished with a section explaining the difference between
reinforcement learning and supervised learning, both conceptually and in relation to their respective
advantages and disadvantages. The next article in this series will be on weight optimization strategies.

Electronic copy available at: https://ssrn.com/abstract=3420952

Weight Optimisation

In recent years we have seen a trend towards online or dynamic portfolio asset allocation methods,
clustering techniques, and methods that combine metadata on financial assets to help decide on the
final weighting. Trading strategies and weight optimization methods can generally be considered as
part of an integrated system. Trading strategies here is the use of perceived signals to execute trades
and weight optimization the optimal weight allocation of active and passive strategies.

Strong parallels can be drawn between weight optimization in machine learning and weight
optimization in portfolio management. When working with neural networks, we must often choose
which optimization algorithm would produce faster and better updates for the network's weight and
bias parameters. This is needed for the internal nodes to learn the optimal relationship in data to
minimize a pre-specified loss function. Researchers end up testing the performance of various
optimizers like Gradient Descent, Stochastic Gradient Descent (SGD), AdaGrad, RMSProp and Adam
on their dataset. In the process, they might come to conclude that nothing really works that well. After
some tinkering, a researcher might add a momentum component to SGD in order to curb the high
variance oscillation that makes standard SGD hard to converge. The next researcher might come along
and see momentum as a problem when it ceases to stop as it reaches a local minimum. In response,
the researcher could suggest a slope jump out of momentum as a reasonable correction15.

A development out of this constant tinkering was Adam (2014) a method that performs best by
combining the best properties of AdaGrad and RMSProp algorithms for a solution that can handle
sparse gradients on noisy problems. In a similar spirit, we have seen portfolio optimization move from
Markowitz's mean-variance portfolio using historical returns to dynamic models that use state of the
art reinforcement learning techniques. This process is not over, in both fields, new methods are
brought to light on a frequent basis. Similar to machine learning the optimal weighting strategy can
and should be tested on validation data, in our parlance, backtests. We want to make sure that our
data drives our optimization choices.

SUPERVISED LEARNING

Supervised learning (SL) techniques learn the relationship between independent attributes and a
designated dependent attribute. SL refers to the mathematical structure describing how to make a
prediction 𝒚𝒊 given 𝒙𝒊. Instead of learning from the environment like RL, SL methods learn the
relationships in data. All supervised learning tasks are divided into classification or regression tasks.
Classification models are used to predict discrete responses (e.g., Binary 1, 0; Multi-class 1, 2, 3).
Regression is used for predicting continuous responses. (e.g., 3.5%, 35 times, $35,000). In portfolio
weight optimization we are generally presented with a continuous response problem.

Deep Portfolio

A useful deep learning technique for finance is autoencoders. It is a learning process to train the
architecture to replicate X itself, namely X = Y via a bottleneck structure. An autoencoder can create
a more cost-effective representation of X. Autoencoding is an unsupervised learning method as there
is no target to predict. However, the low dimensional encoding is used as an input to a supervised
learning method to 'calibrate' and map the inputs to the desired target. The auto-encoder

15 Nesterov Accelerated Gradient

Electronic copy available at: https://ssrn.com/abstract=3420952

demonstrates that in deep learning, it is not necessary to model the variance-covariance matrix
explicitly as the model is already in predictive form. This portfolio optimization process follows four
steps being (1) autoencoding, (2) calibrating, (3) validating, and (4) verifying. This method has been
popularised by Heaton, Polson, and Witte (2017).

(1) Autoencoding: find the market-cap, denoted by FW
m(X), that solves the regularisation problem

min
W
||X −  FW

m(X)||
2

2
 subject to ||W|| ≤  Lm

For appropriately chosen FW
m, this autoencodes X with itself and creates a more information-efficient

representation of X.

(2) Calibrating: for a desired target Y, find the portfolio-map, denoted by FW
p (X), that solves the

regularisation problem

min
W
||Y −  FW

P (X)||
2

2
 subject to ||W|| ≤  LP

This creates a non-linear portfolio from X for the approximation of objective Y.

(3) Validating: find Lm and LP to suitably balance the trade-off between the two errors

εm= ||X̂ −  FWm

m (X̂)||
2

2
 and εP = ||Ŷ −  FWP

P (X̂)||
2

2

Where Wm and Wp are the solutions to the validation and verification step

(4) Verifying: choose market-cap Fm and portfolio-map Fp such that the validation step above is
satisfactory.

Resources:

Data, Code

Linear Regression

We can also apply linear models to the problem of finding optimal portfolios (Britten‐Jones, 1999).
There is a deep connection between fitting linear models and portfolio optimization. The normal

equation is θ̂ = (X′X)−1X′y. Note, in statistics or econometrics it is more common to see β (beta)
instead of θ (theta). The normal equation makes sense if you do want a linear model and the number
of explanatory variables (features) is not too big (e.g., < 100k); perfect for a small universe of stocks.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1bJcUZbrZ8HFXs-cd0vGHeMop16Vf3n23
https://drive.google.com/open?id=1-hOEAiJqaNTUYIyamj26ZvHJNZq9XV09

It is not necessary to use the normal equation; one can also solve for the best coefficients using
numerical search such as gradient descent. With this portfolio optimization method, regularisation
becomes a critical tool to improve out-of-sample performance. The tested regularisation methods
include l2-norm (Ridge Regression), L1-norm (LASSO), and a combination of L1 and L2 norms (Elastic
Net Regression). Regularisation effectively helps one to manage the variance-bias trade-off. Britten-
Jones (1999) demonstrates a close equivalence between Markowitz portfolio optimization and OLS
regression.

Specifically, regress the excess returns of 𝑁 stocks on a constant = 1 without an intercept. Collect the

coefficients on each of the stocks in θ. Rescale θ so that the sum of the elements in θ is 1. (θ∗ =
θ

1Tθ
).

The rescaled coefficients are the Markowitz optimal portfolio weights. As a result, any ML approach
that yields coefficients for a linear model can be reinterpreted as a portfolio optimization approach;
e.g., Ridge regression → Tikhonov regularised optimal portfolio.

Resources:

Code, Paper

Further please see this for an article I wish I wrote, for a few wise words on portfolio optimisation.

UNSUPERVISED LEARNING

Unlike supervised learning which finds patterns using both input data and output data, unsupervised

learning methods finds patterns using only input data. An unsupervised learning framework is useful

when researchers are not quite sure what to look for. It is often used for the exploratory analysis of

raw data and problem discovery purposes. Most unsupervised learning techniques take the form of

dimensionality reduction or cluster analysis where you group data items that have some measure of

similarity based on characteristic values.

Two of the most important techniques are K-means clustering and Principal Component Analysis

(PCA). The only requirement to be called an unsupervised learning strategy is to learn a new feature

space that captures the characteristics of the original space by maximising some objective function16.

PCA attempts to reduce the number of features while preserving the variance, whereas clustering

reduces the number of data-points by summarising them according to their mean expectations.

However, those clusters assignments can also be used to label each data point with its assigned

cluster, leading to a dimensionality reduction towards only one feature. K-mean and PCA in some

sense maximise a similar objective function with K-means having an additional categorical constraint.

16 Inherent to the PCA is the maximisation of variance through a simple linear algebra operation by taking the
eigenvectors of a covariance matrix of features.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1YDZQvz6Pn2AFDX2Uprfaq9JoGvk7RpJy
https://onlinelibrary.wiley.com/doi/abs/10.1111/0022-1082.00120
https://investresolve.com/blog/portfolio-optimization-simple-optimal-methods/

PCA

Principal Component Analysis (PCA) and clustering techniques are used to build classes of similar
assets. The steps here involve integrated portfolio selection and risk estimation to optimise the

portfolio. Let Y = (Y1, … , Yn)
T denote an n-dimensional random vector with variance-covariance

matrix, Σ . The goal of PCA is to construct linear combinations Pi =  ∑ Yjn
j=1Wij

,  for i = 1,…  n in such

a way that the Pi‘s are orthogonal so that Σ[PiPj] = 0 for i ≠  j so that the Pi‘s are ordered to explain

the largest percentage of the total variability in the system.

Each Pi explains the most significant percentage of total variability in the system that has not already
been explained by Pi, … , Pi − 1. Using various selection techniques, you can identify an optimum level
of these components and apply it to a universe of stocks. This is not a complicated method, but it is
very powerful and can be used as a mediating step in various trading strategies, if not the final
allocation decision-making. In the code notebook, there is additional experimentation to compare this
technique with hierarchical clustering methods.

Resource:

Code

HRP

The problem, as stated by De Prado (2016) is that the Mean-Variance (MV) portfolios are optimal in-
sample (training set) but perform poorly out of sample (test set). One way to deal with it is to drop
forecasts altogether, like for example, risk party (RP). The problem is that both RP and MV require the
inversion of a positive-definite covariance matrix. A new method is therefore suggested to overcome
the matrix inversion and forecast issue, called hierarchical risk parity (HRP).

HRP works by grouping similar investments into clusters based on a distance metric; the covariance
matrix’s rows and columns also are reorganised so that the largest values lie along the diagonal; lastly,
the allocations are split through recursive bisections of the reordered covariance matrix.

One starts by defining a distance measure between investments from zero and one, di,j , after which

you cluster the pair of columns (i∗, j∗) together such that (i∗, j∗)argmin(I,j) = {d̀i,j} and i  ≠ j. The next

step is to update {d̀i,j} with the new cluster and apply steps 3-4 recursively until all N-1 clusters are

formed.

We now place correlated investments close together and uncorrelated investments further apart and
carry out a top-down allocation by assigning unit weights to all items by recursively bisecting a list of
items by computing the variance and the split factor and rescaling the allocations; we iterate this
process until full allocation is achieved. In the code, I have included an implementation using Robert
Martin's PyPortfolioOpt17 and an implementation of Chapter 16 in Advances in Financial Machine

17 https://github.com/robertmartin8/PyPortfolioOpt

Electronic copy available at: https://ssrn.com/abstract=3420952

https://colab.research.google.com/drive/1mm9r6EZOERHYkycDbc74GY7S2U6h1oTc

Learning (De Prado, 2018) by Hudson & Thames18, a buy-side open-source research unit headed by
Jacques Joubert.

Resources:

Data, Code, Code 2

Network Graph

Given 𝑁 assets in a portfolio, we have to identify the weights 𝑤𝑖 , (∑ 𝑤𝑖
𝑁
𝑖=1 = 1) so that highly

correlated assets obtain lower relative weights. To do this we can use a weighted graph that is an

ordered tuple, 𝐺 = (𝑉,  𝐸,  𝑊), where 𝑉 is a set of vertices (or nodes), 𝐸 is a set of pairwise

relationships (the edges) between the vertices, and 𝑊 is a set of numerical values assigned to each

edge. A useful representation of 𝐺 is the adjacency matrix.

𝐴𝑖𝑗 = {
1, 𝑖𝑓 𝑖 𝑖𝑠 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑡𝑜 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Here the pairwise relations are expressed as the 𝑖𝑗 entries of an 𝑁  ×  𝑁 matrix where 𝑁 is the number

of nodes. The strategy is then to transform the historical pricing data into a graph with edges weighted

by the correlation between each stock. We can then use graph centrality measures and graph

algorithms to obtain the desired allocation weights. In five steps, we do the following:

1. Compute the distance correlation matrix 𝜌𝐷(𝑋𝑖 , 𝑋𝑗) for the Open, High, Low, Close and Return

time series.

2. Use the NetworkX19 module to transform each distance correlation matrix into a weighted

graph.

3. Adopt a winner-take-all method and remove edges with correlations below a threshold value

of 𝜌𝑐 = 0.325 (adjust this threshold value if the graph disconnects)

𝐶𝑜𝑟𝑖𝑗 = {
𝜌𝐷(𝑋𝑖 , 𝑋𝑗) , 𝜌 ≥ 𝜌𝑐

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4. Inspect the distribution of edges (the so-called degree distribution) for each network20. The

degree of the ith vertex is given as,

18 https://hudsonthames.org/
19 https://github.com/networkx/networkx
20 The degree of a node is simply the number of connections it has to other nodes.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=198fpHhD973i3rKa9D7oz-SrmBwPykQEc
https://drive.google.com/open?id=1z3Fe7QXZ6c566KOG3HtQEfCc84UAGwFf
https://colab.research.google.com/drive/1-Z3OjjnIR-41E2tycKFosvxEt-RrAgZB

𝐷𝑒𝑔(𝑖) =∑𝐴𝑖𝑗

𝑁

𝑗=1

5. Finally build a master network by averaging over the edge weights of the Open, High, Low,

Close, and Return networks and derive the asset weights from its structure.

There are multiple variations available for constructing the network and obtaining the distance; a

few different approaches are considered in the notebook. A really extensive analysis can be found

in the attached code by Maya Benowitz a Quant at CarVal.

Code

Bayesian Sentiment

Advances in sentiment mining techniques have led researchers in the 2010s to consider the use of
public opinion for stock market prediction. Xing, Cambria, Malandri, and Vercellis (2018) have decided
to do the same for asset allocation by accounting for public mood using an online Bayesian asset
allocation model. This model straddles between a trading strategy and weight optimization and falls
within the supervised learning section because of its use of two neural models to generate market
views.

To address the much-discussed limitations of the Markowitz model, Bayesian methods take additional
information such as investor judgement and market fundamentals into account; a method once
proposed by Black and Litterman (1990). The difference is that classical methods rely on financial
experts and overlook public opinion and sentiment. A fair criticism of the Black and Litterman model
is its subjective nature on market views; it leaves unanswered the question of how to assess these
views. With the proposed method, public sentiment from the web can help researchers to formalise
market views automatically.

The BL model assumes that equilibrium returns are normally distributed 𝑟𝑒𝑞~𝑁(𝛱, 𝜏Σ) where Σ is the

covariance matrix of asset returns and 𝜏 is an indicator of the confidence level of the CAPM estimation
of 𝛱 the equilibrium risk premium of the market. The market views on the expected returns held by
an investor agent are also normally distributed as 𝑟𝑣𝑖𝑒𝑤𝑠~ 𝑁(𝑄,𝛺). The posterior distribution of the
portfolio returns that provide the views are therefore, also gaussian.

With the distributions denoted as 𝑟𝐵𝐿~𝑁(𝜇̅, Σ̅), the vector of expected returns 𝜇̅ and the covariance

matrix Σ̅ will be a function of the aforementioned variables.

[𝜇̅, Σ̅] = 𝑓(𝜏, Σ, Ω, Π, 𝑄)

The function can be induced by applying Bayes’ theorem on the probability density function of the
posterior expected returns.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://colab.research.google.com/drive/10WNiVuICvFajW2uTDrwI6w7aSUkjINPl

𝑝𝑑𝑓(μ̅) =
𝑝𝑑𝑓(μ̅|Π)𝑝𝑑𝑓(Π)

𝑝𝑑𝑓(Π|μ̅)

The optimised Bayesian portfolio weights now have a similar form to the Markowitz model by
substituting the mean-variance version of Σ and 𝜇 with the new variables Σ̅ and 𝜇̅.

𝑤𝐵𝐿
∗ = (δΣ̅)−1μ̅

A time series of asset prices, trading volume, and public sentiment data is used to approximate optimal
market views. The sentiment is computed from a range of social media platforms using NLP
techniques. The standard deviation will be interpreted as the confidence of expected return of the
portfolio, and a relative view would be described as taking the form “I have ω1 confidence that asset
𝑥 will outperform asset 𝑦 by 𝑎%” while an absolute view will take the form “I have a 𝜔2 confidence
that asset 𝑧 will outperform the market by 𝑏%”. As a result, a portfolio of 𝑛 assets and a set of 𝑘 views
can be represented by three matrices 𝑃𝑘,𝑛 , 𝑄𝑘,1 and Ω𝑘,𝑘. Apart from performing slightly better than

traditional methods, it also allows one to tell a nice Bayesian story.

Resource:

Code (still an unresolved issue)

REINFORCEMENT LEARNING

Reinforcement learning (RL) in finance comprises the use of an agent that learns how to take actions
in an environment to maximise some notion of cumulative reward. We have an agent that exists in a
predefined environment, the agent receives as input the current state 𝑆𝑡 and is asked to take an action
𝐴𝑡 to receive a reward 𝑅𝑡+1, the information of which can be used to identify the next optimal action,
𝐴𝑡+1 given the new state 𝑆𝑡+1. The final objective function can be the realised/unrealised profit and
loss and even risk-adjusted performance measure like the Sharpe Ratio. Allocation decisions in finance
are challenging to deal with because it is partially-observed, non-stationary, regime-dependent, and
noisy. Standard models apply and recombine single period predictions using an optimiser, but in the
real world, the actions could have long term actions that could be acted against by the environment.
Reinforcement learning can help us to deal with some of these problems by taking a more holistic
approach.

Deep Determinist Policy Gradient (DDPG)

Deep learning models could be used in reinforcement learning to solve high-dimensional problems.
To deal with the continuous action space of portfolio weighting, we can use Google DeepMind's off-

Electronic copy available at: https://ssrn.com/abstract=3420952

https://colab.research.google.com/drive/1sMAoJZuuNIRnrivAzxHV5fulMOWO17mb

policy, and model-free algorithm called Deep Deterministic Policy Gradient (Lillicrap et al., 2015).
Using this method, we do not have to discretize continuous action spaces which might lead to the
curse of dimensionality and a loss of valuable information. The environment is derived from an OpenAI
environment-class more can be found in their documentation21. This environment takes arguments
trading cost and window size into account to approach a realistic setting.

To start formalising the problem, we set the number of stocks to 𝑁. At time step 1 we are fully
invested, the close/open relative price vector are defined as:

𝑦𝑡 = [1,
𝑆1,𝑡,𝑐𝑙𝑜𝑠𝑒
𝑆1,𝑡,𝑜𝑝𝑒𝑛

,
𝑆2,𝑡,𝑐𝑙𝑜𝑠𝑒
𝑆2,𝑡,𝑜𝑝𝑒𝑛

, … ,
𝑆𝑁,𝑡,𝑐𝑙𝑜𝑠𝑒
𝑆𝑁,𝑡,𝑜𝑝𝑒𝑛

]

The portfolio weight vector is then defined as:

𝑤𝑡 = [𝑤𝑜,𝑡 ,𝑤1,𝑡 ,… ,𝑤𝑁,𝑡]

Here 𝑤𝑖,𝑡 is the fraction of investment in stock 𝑖 at time stamp 𝑡. Note 𝑤𝑜,𝑡 represents the fraction of
cash maintained. The profit after timestamp T is:

𝑝𝑇 =∏𝑦𝑡

𝑇

𝑡=1

⋅ 𝑤𝑡−1

Once we consider the trading cost factor of 𝜇 then the trading cost at each time stamp is:

𝜇𝑡 = 𝜇∑|
𝑦𝑡⊙𝑤𝑡−1
𝑦𝑡 ⋅ 𝑤𝑡−1

− 𝑤𝑡|

where ⊙ is the element-wise product. The profit can then be formulated as:

𝑝𝑇 =∏(1 − 𝜇𝑡)𝑦𝑡 ⋅ 𝑤𝑡−1

𝑇

𝑡=1

21 https://gym.openai.com/docs/

Electronic copy available at: https://ssrn.com/abstract=3420952

Now we have dealt with the problem formulation we have to formulate the Markov Decision Process,

we set the state 𝑜𝑡 as the fixed window 𝑊 price history 𝑆𝑖,𝑡⃗⃗ ⃗⃗ ⃗ of all the assets 𝑁:

𝑜𝑡 = [𝑆1,𝑡⃗⃗ ⃗⃗ ⃗⃗ , 𝑆2,𝑡⃗⃗ ⃗⃗ ⃗⃗ , … , 𝑆𝑁,𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗]

𝑆𝑖,𝑡⃗⃗ ⃗⃗ ⃗ =

[

𝑆𝑖,𝑡−𝑊
𝑆𝑖,𝑡−𝑊+1

⋮
𝑆𝑖,𝑡−𝑊 − 1]

Moreover, the action 𝑎𝑡 is merely the portfolio weight vector as previously defined 𝑤𝑡. We, therefore,
want to train a policy network: 𝜋𝜃(𝑎𝑡 , 𝑜𝑡). The underlying evolution and transition of state are then
determined by the market and we can simply obtain the observation of the states. The reward is
specified as the log-profit at each time step, log 𝑝𝑇, which avoids the sparsity of rewards problem.
Recall with the DDPG algorithm we want to learn the policy network 𝜋𝜃(𝑎𝑡 , 𝑜𝑡) with a continuous
action space reinforcement algorithm. The Actor-Network is set as the same as the policy network;
the Critic-Network is a linear combination of Actor-Network structure of the state and action; the
exploration noise is set by the Ornstein-Uhlenbeck process with zero mean, 0.3 sigma, and 0.15
theta22.

The specific implementation in the code notebook looks at 15 stocks in for the first ten months in 2018
with data in minute format with open, close, high, low and volume variables. This method is adapted
from Jiang, Xu, and Liang's work published on ArXiv (2017). The action space contains a cash position,
long positions and short positions. The algorithm is hardcoded to only act every 7 minutes. Note that
reinforcement models can be very unstable and are generally hard to converge; and when they do
converge the generally overfit. At this stage, without any further innovation, reinforcement learning
models have to be implemented with great care.

Code

SUMMARY

There are several ways in which modern machine learning innovations can be used to help portfolio
managers optimally allocate assets. Machine learning is poised to partially replace traditionally rigid
allocation methods. This paper divides these methods into supervised-, unsupervised-, and
reinforcement learning frameworks. Within the supervised learning framework, three different
techniques were considered; first, a more traditional linear approach using OLS, Ridge, and Lasso
regressions; second, a non-linear deep learning approach using autoencoders; and lastly a Bayesian
sentiment method. The paper further identified three unsupervised methods using principal
component analysis, hierarchical clustering analysis, and network graphs. The paper finished with a

22 For more information on this distinction see the original DeepMind paper referenced at the start.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://colab.research.google.com/drive/1L3-D2ZmGZkPRsB9gb5BviGkSkMTLti7_

deep reinforcement learning approach to portfolio weight optimization. As with the first paper, I
expect to see a lot more growth in reinforcement learning methods in the coming years; to paraphrase
Vladimir Vapkin the inventor of the support-vector machine method – one should avoid solving
difficult intermediate problems when what you truly want to solve is a target problem.

OTHER

Online Portfolio Selection (OLPS)

Online Portfolio Selection (OLPS) sequentially selects a portfolio over a set of assets in order to achieve
a certain target such as maximising cumulative wealth. In this analysis, we can use ETFs to avoid
survivorship bias. State of the art online portfolio selection algorithms can be divided into five
classifications, namely, Benchmarks, Follow-the-Winner, Follow-the-Loser, Pattern-Matching, and
Meta-Learning Algorithms. The following paper and book gives a good summary of the different
strategies and their historical performance. In this notebook, no meta-learners have been
implemented. Meta-learners are interesting in that they define several base experts that are
combined through some mechanism to form the final portfolio. It might be fruitful to pay more
attention to this in the future.

Resources:

Code and Data

GANVaR

Credit: Hamaad Shah

By using GAN (specifically BiGAN) on financial data, we do not have to explicitly specify the distribution
(e.g., multidimensional Gaussian distribution). This model can be used to estimate portfolio risk
measures like the Value-at-Risk (VaR). GAN allows us to maximise the likelihood of complex
distributions, this might be key for financial data know to be complex and highly non-linear. This
method is compared against traditional method. The math is presented inside the notebook.

Resources:

Code

Execution

Many sell-side firms have experimented with algorithms that use reinforcement learning for
execution. These algorithms typically consist of a scheduler that makes macro decisions across a time
horizon of hours, and a limit order module that makes micro decisions on smaller time scales. The
limit order modules is based on a reinforcement learning model. First, identify your current state or
regime and then take micro actions. Within a stated horizon, the limit order module seeks to sell and
buy securities with for example the aim of minimising slippage.

A reinforcement model needs to have appropriate data. Current implementations include market
size/price data (e.g. spreads), execution data (e.g. filled quantity and realized p.o.v. rate), market
signals (e.g. medium-frequency like momentum and high-frequency like order flow) and model

Electronic copy available at: https://ssrn.com/abstract=3420952

https://arxiv.org/pdf/1212.2129.pdf
https://www.oreilly.com/library/view/online-portfolio-selection/9781482249644/
https://drive.google.com/open?id=1TPiJE6klq7D1ZzwoKhZtPA6WzwD1txHD
https://drive.google.com/open?id=1C0QLVV2iC8QVvCG7F4bhP8dP3wuGkJ8E

estimates (e.g. volume/volatility prediction and fill probability estimate). In addition, as mentioned
before, the model operates under the constraints of the quantity, time horizon, limit price and other
market conditions. The reinforcement model decides to either place an aggressive cross the spread or
passive order at each price level of the order book. An inherent problem is that rewards attributable
to a step can only be discerned at the end of all transaction, hence the need for reinforcement
learning. In most examples, good success can be achieved by learning the functional map via a neural
network with one hidden layer. The point is to learn the value function within the framework of
reinforcement learning.

Validation Techniques and Data Processing

ML Conceptual Map

Machine learning techniques can largely be broken into the data processing, supervised learning,
validation techniques, unsupervised learning and reinforcement learning. Every machine learning
solution is constructed out of a mixture of these components. In the short-term, I see a lot of scope
for innovation w.r.t. unstructured data processing techniques and in the long run a lot of room for
improvement in the reinforcement learning space. In this section, I will look at some of these
components through an asset management lens by pulling some additional information from the
previous trading strategies.

1. Data Processing
a. Natural Language Processing

i. Text Extraction
ii. Word Embeddings

iii. Topic Modelling
b. Image and Voice Recognition
c. Feature Generation

2. Supervised Learning
a. Algorithms

i. Gradient Boosting
1. LightGBM
2. XGBoost
3. Constraint

ii. Neural Networks
1. CNN
2. RNN
3. GAN

b. Tasks
i. Regression

ii. Classification
c. Analysis

i. Cross Sectional
ii. Time Series

3. Validation Techniques
a. Visual Exploration
b. Table Exploration

4. Unsupervised Learning
a. Traditional

i. Dimensionality Reduction
ii. Clustering

iii. Anomaly Detection
iv. Group Segmentation

b. Neural and Deep Learning
i. Autoencoders

ii. Boltzmann Machines
iii. Deep Belief Networks
iv. Generative Adversarial

Networks
c. Semisupervised Learning

i. Mixture Models and EM
ii. Co-Training

iii. Graph Based
iv. Humans

5. Reinforcement Learning
a. Markov Decision Process and

Dynamic Programming
b. Monte Carlo Methods
c. Temporal Difference Learning
d. Multi-armed bandit
e. Deep (Recurrent) Q Network
f. Actor Critic Network
g. Inverse Reinforcement Learning

Electronic copy available at: https://ssrn.com/abstract=3420952

c. Feature Importance
d. Feature Selection
e. Cross Validation

Data Processing:

Feature Cleaning

There are a few cleaning operations you want to do before starting a prediction task. This includes
dropping columns that are mostly empty, dropping constant columns, dropping quasi-constant
columns, dropping columns that are overly correlated (only in prediction task, not in predictor analysis
tasks), dropping rows that are mostly empty across columns, and identifying and replacing outliers (if
needed). For linear and neural network models, it is often the best strategies to clip outliers rather
than dropping the samples.

You can fill empty values with column median or reconstructed values. I would normally set the
missing threshold to 0.9 and the correlation threshold to 0.99. I would only drop correlated features
to improve prediction performance; this should not be done when you want to perform a predictor
analyses as you risk removing extremely important features from the analysis. With GBM models, you
can also fill null values with out of range values (-999, -1 etc.), only do this after feature
transformations, otherwise these strange values might be caught up in mapping operations and on a
further note do not do this for neural networks. Before you remove null values, you can also create
an extra binary column to define whether a null value has appeared, making sure that we do not lose
information if the column was not missing at random. In time series always do back filling instead of
forward filling when working with features, and although I recommend dropping

Resources:

Code

Feature Generation

Signal Processing

Financial data is fundamentally noisy, making data processing one of the most crucial steps. It cannot
be neglected and is essential for all learning problems. The data processing starts at the point of data
selection. Something as simple as knowing to select ETF’s as opposed to reconstructed indexes can
significantly improve the generalised accuracy of your model as a result of removing survival bias.

Similar to statistics, it’s best to work with relatively invariant processes such as the returns on price,
and the changes in yield and volatility. The mean variance and auto-correlation should be near
constant over time. Researchers like Charles Tapiero (NYU) have looked into fractional finance, which
consists of fractional derivatives of price series. Derivatives on the price of securities can be optimised
to balance the need of stationary series with the need of predictability.

Marcos Lopez de Prado have phrased this question differently as “what is the minimum amount of
differentiation that makes a price series stationary while preserving as much memory as possible”. To
me this can only be resolved in one way, and that is by experiment, I personally do not see the need
for stationarity to persist when a level of non-stationarity works in your favour. To make data ‘more’

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1Q2RiXVxtwezpur6dRkXDzjVmq74lsnk_

stationary, one can therefore look at differentiation and fractional differentiation methods. To
generate more fundamental and market data, one can make use of GAN while considering the dollar
additivity constraint. I will release some notebooks touching on these subjects in the future.

To deal with some of these issues one can decompose a time-series into the trend, seasonal and
residual components. These components can be separately included into a machine learning model.
An ARIMA model itself can be included as an input to a model. For example, in time series
classification, we need not stop with the ARIMA model, I have successfully included instance based
models like Dynamic time warping (DTW), Weighted DTW, Time Warp Edit Distance (TWED), Moving-
Split Merge (MPM) and derivatives DTW (DDTW) in my meta-model.

Automated Engineering

It is good practice to make use of automated feature engineering tools. “Having too many features is
a better problem to have than having too few” – some wise sage. The automated tools that can be
particularly helpful includes, TSFresh, Feature Tools, SHAP features and some others. GBM model
specifically struggles to approximate multiplication and division, therefore adding these
transformations explicitly can improve your model.

Manual Engineering

Categorical Encoding

When a feature has high cardinality and is sparse, it is good practise to test the performance of the
feature before clogging up your model. Another important consequence of including any feature is
the knowledge of whether or not you would have access to the feature in the future. If you do not, it
is unwise to include it in the present model. Also consider a cost-benefit of features, when features
are too costly to obtain and do not provide much of a benefit, do not include it. Data acquisition has
to be value driven.

For neural network and linear models, when your dummies explode you can use sparse matrixes,
which works by storing only non-zero elements to save memory. Most GBM models can also work
with sparse matrixes directly. A good feature for neural networks is the interaction between
categorical variables; this is not useful for GBMs. You can do numerous other transformations like
Ranking, Quantization, Binning, Transformation and Mapping, Clustering and Data-time extraction.

Preprocessing

In the Preprocessing step, you have to normalise and or standardise your data. You also have to decide
whether your target variable is normally distributed. If it is not, you can do a log transform or a square
root transformation. Sometimes it is helpful to train a model on different preprocessing groupings and
selecting the best among them. Data transformations including unsupervised feature creation should
be separately done on train and test sets to avoid cross-contamination. Researchers often create a
‘pipeline’ for this purpose to easily create the transformation for each set.

Resources:

Code

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1PBk1UjdtJoXwVMxt9gSefSKh2Y9llEee

Feature Selection

All machine learning models internally perform a sort of variable selection in the training process.
LASSO regressions do this quite explicitly by zeroing out coefficients. Gradient Boosting Models
(GBMs) will on the other hand ignore non-informative features for the splitting operation, as shown
by the low importance score these features obtain. For GBMs, we can measure this importance
measure because of the use of variables to split nodes. Each split will give us a measure of expected
improvement, i.e., decease in the impurity of the node; and we can record these improvements over
all nodes and all trees. I personally do not give much time to any of these measures, as they are mostly
misleading.

I do not perform any feature selection beyond the feature cleaning stage for prediction tasks; for
predictor analysis tasks, I do however perform extensive feature selection. When I do feature selection
for prediction tasks, it takes the following form. Using out of sample data, I would calculate the feature
importance using permutation importance and SHAP values. I would then remove values so that the
cumulative importance is 99% for both of these methods, which normally drops about 10% of the
original features.

In the age of deep learning, I would strongly advise against other feature selection methods. They are
poor proxies of performance once ingested into a model. Many teams, including Google, use large
models with a lot of data without bowing down to feature selection. In my personal experience with
GBMs and NNs feature selection has become mostly redundant. In saying that sometimes feature
selection has economic reasons behind it, e.g. which features can I remove while still maintaining 90%
accuracy so that I can stop paying the expensive data provider? In addition, some features simply
introduce noise that can hurt out of sample performance, in which case you can remove feature until
you hit 99% of cumulative feature importance as described in the before mentioned paragraph.

Validation

Exploration

Table Exploration, visual exploration and two.

Model Selection

Table 3: XGBoost and Deep Learning Model Performance Comparison

 Metrics XGBoost
Model

Deep Feed
Forward
Network

Deep Convolutional
Neural Network

Logit Model

ROC AUC Sore 0.9587 0.8444*** 0.9142*** 0.7092***

Accuracy Score 0.9755 0.9324 0.9518 0.6856

False Positive Rate 0.0037 0.0666 0.0296 0.2296

Average Log Likelihood 0.1414 0.5809 0.2996 1.1813

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=1uGlOgnGVllLC9mZnvcEwzyq_jOKfZURl
https://paper.dropbox.com/doc/Visual-Exploration--AgtPDlkVyVvbeb67Kf95cgV5Ag-fOTNwN7UMREKYFbo9vX2l
https://paper.dropbox.com/doc/Machine-Learning-Analysis--AgswDu9VJfcUZbfrVech_~KUAg-jdyTySCjyThu7OUSeI1hk

This table illustrates the performance of two deep learning models against the XGBoost Model. The Feed
Forward Network is a deep learning network that does not circle back to previous layers. The Convolutional
Neural Network is a biologically inspired variant of MLP, popularised by recent image classification studies.
The best possible Logit model was established by choosing a selection of the best variables. Further results
include the isolation of the 10 best predictor variables (using the Gini Index) in all models, this produced similar
results to the above table both in extent and in rank. *p<.1 ** p<.05 *** p<.01. Significance levels are based
on a two-tailed Z test to identify the statistically significant difference between all contender models and the
best performing model, which is made possible due to the cross-validation process.

XGBoost Model Comparison Using Different Inputs

 Metrics All Data 50 Variables
Model

One Year Before
Bankruptcy

Two Years Before
Bankruptcy

ROC AUC Sore 0.9587 0.9408*** 0.9666** 0.9434***

Accuracy Score 0.9755 0.9700 0.9860 0.9837

False Positive Rate 0.0037 0.0056 0.0010 0.0002

Average Log Likelihood 0.1414 0.1795 0.1682 0.2206

This table compares the performance of model that includes only 50 of the most predictive variables as inputs,
a model that only includes bankruptcy observations one or two years before the filing. All statistical comparisons
are made against the model called "All Data." *p<.1 ** p<.05 *** p<.01. Significance levels are based on a two-
tailed Z test.

Metric Validation

For time series validation, I generally benchmark against the lower of (Theta+ARIMA +ETS)/3 or
ARIMA. For many examples you would struggle to beat this benchmark. Some more time-series
notebooks can be found here (rough). The ARIMA model can also be automated.

Regression Example (Earnings Prediction):

From left to right, the above models relate to the following, as presented in the equations in the study,
𝑝 , 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 , 𝐸𝑝𝑠𝐸𝑠𝑡4𝑄, 𝐸𝑝𝑠𝐸𝑠𝑡4𝑌𝑖𝑡 , 𝐸𝑝𝑠𝐸𝑠𝑡𝑅𝑊𝑖𝑡 , 𝐸𝑝𝑠𝐸𝑠𝑡𝐿𝑄𝑖𝑡 and 𝐴𝑅𝐼𝑀𝐴.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/open?id=13Y8E5f4gm1IGTl8CVSQ1fWf25VuSwIOd
https://github.com/tgsmith61591/pmdarima

Aggregated MAE Across All Tests

This figure reports the aggregated MAE tests over multiple test periods. The four periods and associated patterns
at the bottom of the graph. The above chart presents both an ML model that does incorporate analysts' forecasts
(ML), and a model that does not incorporate analyst forecasts (ML Ex-forecast) It is, therefore, unlike the time-
series models that only use past actual EPS values. Further, using an OLS regression the Analyst Forecast has
been bias corrected (Analyst Unbiased).

Classification Example:

For classification, you can use a random confusion matrix. The evaluation of a successful model

can start with an accuracy measure. The accuracy can be defined as the percentage of correctly
classified instances (observations) by the model. It is the number of correctly predicted surprises (true
positives) and correctly predicted non-surprises (true negatives) in proportion to all predicted values.
It incorporates all the classes into its measure (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁), where TP, FN, FP
and TN is the respective true positives, false negatives, false positives and true negatives values for all
classes. The measure can otherwise be represented as follows: 𝑎𝑐𝑐(𝑦, 𝑦̂) =

1

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∑ 1(
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠−1

𝑖=0 𝑦̂𝑖 = 𝑦𝑖).

Surprise Breakdown Random Guessing Confusion Matrix

Random Confusion Matrix
Random Guessing

Marginal Sum of Actual
Values Neutral Negative Positive

A
ct

u
al

Neutral 89020 24590 55890 169500

Negative 24590 6792 15439 46821

Positive 55890 15439 35090 106419

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ML Ex-
forecast

ML Analyst
Unbiased

Analyst Four
Quarter

Four Years Seasonal Last
Quarter

ARIMA

A
gg

re
ga

te
d

 E
rr

o
r

Estimate Types

90-97 90-03 90-08 90-12

Electronic copy available at: https://ssrn.com/abstract=3420952

Marginal Sum of Predictions 169500 46821 106419 322740

This table is formed by 'randomly choosing the observations' by allocating the observations according to the
underlying distribution.

The multiclass ROC is a universal way to identify the performance of a classification model. The AUC
(area under curve) score provides an integral based performance measure of the quality of the
classifier. It is arguably the best single number machine learning researchers have in measuring the
performance of a classifier. The middle line is a line of random ordering. Therefore, the tighter the
ROC-curves fit to the left corner of the plot, the better the performance. Two other measures included
in the graph is a macro-average measure that equal weight to each class (category) and a micro-
average measure that looks at each observation. AUC values of 0.70 + is generally expected to show
strong effects. The ROC test is the first indication that the model performance is significantly different
from null. In subsequent tables.

Multiclass Receiver Operating Characteristic (ROC) for a 15%+ Surprises Strategy

This figure reports the ROC and the associated area under the curve (AUC). The ROC is measured for three
different classes, class 0 is the negative surprise class, 1 is the neutral class and 2 is the positive surprise class.
The macro-average measure is equal weighted to each class and a micro-average measure looks at each
observation weight. The random ordering or luck line is plotted diagonally through the chart. The associated
curves are associated with a good classification model.

Luck

Electronic copy available at: https://ssrn.com/abstract=3420952

Healthy and Bankrupt Confusion Matrix.

Aggregated Health and Bankrupt
Firms Matrix

Predicted
Sample Proportion

Healthy Bankrupt

A
ct

u
al

 Healthy 29041 - TN 116 - FP 0.96

Bankrupt 805 - FN 258 - TP 0.03

Precision 0.97 0.69 30220

Improvement 0.01 0.66 -

This bankruptcy prediction task solves for a binary classification problem that produces a 2×2 matrix. The
columns of the matrix represent the predicted values, and the rows represent the actual values for bankrupt
and healthy firm predictions. In the cross-section of the rows and columns, we have the True Positive (TP),
False Negative (FN - type II error), False Positive (FP - type I error)), and True Negative (TN) values. The sample
proportion on the far right is equal to all the actual observations of a certain classification divided by all the
observations. The precision is calculated by dividing the true positives (Bankruptcies) with the sum of itself
and the false negatives (Healthy). An example along the second column: 258/(116 + 258) = 69%. The
improvement is the percentage point improvement the prediction model has over a random choice
benchmark.

Random Guessing Confusion Matrix.

Aggregated Health and Bankrupt
Firms Matrix

Random Guess Marginal Sum of
Actual Values Healthy Bankrupt

A
ct

u
al

 Healthy 28131 - TN 1026 - FP 29157

Bankrupt 1026 - FN 37 - TP 1063

Marginal Sum of Guesses 29157 1063 1063

This table is formed by 'randomly choosing the observations' by allocating the observations according to the

underlying distribution, as presented by Sample Proportion in Error! Reference source not found..

Cross Validation

There is no reason why you cannot test which validation process leads to the best out-of-sample
performance. Sometimes you can be surprised by the results. Rolling, similar to TSF, is not commonly
used in ML literature, but it perfect for time series prediction. It always outperforms train-test division
unless randomness intervenes.

Table 4: Model Comparison Using Different Performance Validation Procedures

 Metrics (1)

All Data

 (2)

Time-Split

 (3)

K-Fold (KF)

 (4) 95%
Confidence
(+/-)

Electronic copy available at: https://ssrn.com/abstract=3420952

(TS) Time Split
Fold (TSF)

ROC AUC Sore 0.9587 0.9655** 0.9467** 0.9570 0.0142

Accuracy Score 0.9755 0.9837 0.9682 0.9712 0.0163

False Positive Rate (p-value) 0.0037 0.0069 0.0028 0.0039 0.0015

Average Log Likelihood 0.1414 0.0825 0.1301 0.1052 0.0707

This table compares the performance of the best models that resulted from different out-of-sample
performance tests. (1) The original "All Data" model allocates 60% of the observation to the training set, 15% to
the development of validation test set and 25% to the test set. The 15% is used to measure and improve the
performance of the model. The observations to each of the splits is randomly selected. (2) TS is a simple ordering
of the observation in time series and the creation of longitudinal training - 60%, validation - 15% and test set
splits -25%, this method ensures that there is no information leakage from the future observations. (3) KF is a
randomised cross-sectional method that scrambles the observations and splits them into training and test sets
and calculates the average metrics from 10 different iterations or folds. (4) TSF is the most robust method and
has also led to the model with the best generalisable performance as evidenced by the battery of metrics - It is
a longitudinal blocked form of performance-validation that suits this form of bankruptcy prediction, it uses the
strengths of both (2) and (3). All statistical comparisons are made against the model called "All Data." *p<.1 **
p<.05 *** p<.01. Significance levels are based on a two-tailed Z test.

Feature Value

The following models have model-specific feature interpretability: linear regressions, logistic
regressions, GLMs, GAMs, Decision Trees, Decision Rules, RuleFit, NBCs and KNNs. For more black-box
models one can use model agnostic methods like partial dependence plots (PDPs), individual
Conditional Expectation (ICEs), Accumulated Local Effects (ALEs), Feature Interactions, Global and
Local Surrogates, and lastly Feature Importance measures.

Feature importance measures can be model-specific or model-agnostic. The only methods that I trust,
albeit cautiously, is Permutation Importance and SHAP Values. Both of these methods are model-
agnostic. I also recommend SHAP dependence plots as opposed to PDPs. However, PDPs and ICEs can
be successfully used to identify feature and feature interaction behaviour when you are using GBMs
and a gain measure. So start with SHAP values and Dependence plots and for additional values move
into GBM’s with PDPs + ICEs.

Per the above, the only feature importance measures worth studying are permutation methods.
Permutation is the random shuffling of feature values to nullify a feature, which allows you to
investigate how much worse a prediction model is performing without the feature. The first is a
method known as Permutation Importance (PI) and the second SHAP values (SVs). For both of these
methods, you can estimate significance scores. Compare to normal Shapley values, I prefer SHAP
values because it returns sparse results with many of the shapley values estimated to be zero; this is
especially useful in feature selection procedures.

One of the disadvantages with SV is the compute which is O(2^n) order of magnitude. Generally, one
wants to avoid algorithms with running times where n is an exponent. The SV can be interpreted as
the contribution of a feature value to the difference between the actual prediction and the mean
prediction. So, what is PI. It can be defined as the increase in the prediction error of the model after
the feature’s values are permuted. Features’ PIs changes with each random shuffling. It is therefore
good practice to repeat the permutations and develop a statistical significance score. Both of these

Electronic copy available at: https://ssrn.com/abstract=3420952

values can be used in regression and classification tasks, for regression one would typically look at
accuracy score and for classification, one would typically look at the ROC (AUC) score.

The benefit of SVs is that they provide local and global insight but this is at the expense of being slightly
less interpretable. The disadvantage of PI is that it only provides global insight but on the other side
are very factual and intuitive. These measures play complimentary roles in all my analyses. When you
are investigating global feature importance look at PI, when you look at local feature importance, or
and interested in interaction effects, individualised data points then use SVs. For feature selection
only use training data, for predictor analysis and feature importance use both training and test data.
Just a last word of warning, when features are correlated then the overall scores would be much lower
as the remaining features pick up the slack. This is true for all permutations methods. I have devised
a method to overcome this problem, called interpretive-features.

When we collapse a feature's importance across all samples to a single number we are forced to
decide what we want to measure. For example, is a feature with high effect on a small number of
observations more important than a feature with a small effect on many observations? I think the
answer to this depends on the application. With SHAP values you are able to investigate how the
feature ‘acts’, this cannot be done with Permutation importance. To understand what is meant with
SHAP values being local and individualised, consider the following. After you train your model and
explain it on your training dataset to get a matrix of SHAP values, you can consider every single column
as the importance of a feature across all samples. It will have both positive and negative values.

One can do many extended statistical tests by having access to this data. For one, you might want to
know if those values have a meaningful trend or are just driven by random noise. To evaluate this you
can retrain your model on a bootstrap resample of your dataset and then explain it again on your
original training data to get another matrix of SHAP values. If you take the dot product (or correlation)
between two of the same columns in each matrix you will see how well the impacts of a feature in the
first model agree with the impacts of that same feature in the other model. By repeating this multiple
times you will get an estimate of the global stability of a feature. If the correlation is consistently
greater than 0 then you have a stable feature. With additional bootstraps you can also build a global-
level importance interval for each feature and calculate the associate feature significance.

A further neat attribute of Shapley values are their linearly additivity. As a result you can compare
groups together by aggregating the scores. You might wonder how SHAP works, it works by permuting
input data to assess the impact of each feature. Each feature’s contribution is averaged across all
possible feature interactions. This approach is based on the concept from game theory. Permutation
importance does something similar, but only assess the global impact on the prediction, it is a
traditional feature importance algorithms. All traditional feature importance algorithms will tell us
which features are most important across the entire population, but this is one-size-fits-all approach
that does not always apply to each individual sample (company, customer, transaction, and unit). A
factor that is an important driver for one company may be a non-factor for another. By looking only
at the global trends, these individual variations can get lost, with only the most common denominators
remaining.

With individual-level SHAP values, we can pinpoint which factors are most impactful for each
individual company, allowing us to customize our next actions accordingly. When features are
correlated, their impact on the model score can be split among them in an infinite number of ways.
This means that the SHAP values will be lower than if all but one of the correlated feature(s) had been
removed from the model. The risk making some features look less important than if their impacts
remained undivided. To be fair, all known feature importance methods have this problem.

Interpretive-Features

Electronic copy available at: https://ssrn.com/abstract=3420952

Interpretive-features is a recursive numerical approach to identify the most proximate features to the
target value conditioned on a neural network model. The problem is that SHAP and Importance
Permutation assumes independent features. The strength of this method is that it does not assume
feature independence. It identifies the lowest model-redundant, highest performing feature set
through a neural network approximator. This is the best method I know of to deal with
multicollinearity when performing a predictor analysis as opposed to prediction task. This method
maximises the interpretability and explainability of a model mathematically. Note, although possible,
this method is not meant to improve your prediction accuracy, and instead is meant to highlight the
best features to describe the movement of the target variable.

For n respective features select their closest five correlates and add 5000 additional bootstrapped
rows by randomly sampling from the five top correlates; collectively call them k; establish model
m(n_k); cycle through all possible model combinations; train the model on a correlation aggregated
time series and test the model on individual correlates. Select the set of remaining features of the top
performing model as the low-correlation-high-prediction model. Repeat the process if necessary. This
is a model-specific technique to get rid of unnecessary correlated features. This concept is built on the
theory that the correlates with the highest predictive power are causally more proximate to the target
or response variable.

For more detail, see the steps as outlined below.

1. Identify each feature’s (F) top N (5) correlates.
2. Normalise all features.
3. Combine and average all correlates into one time series.
4. Train a multi-layered neural network (M) with the newly horizontally aggregated time-series.
5. Resize top N correlates table to number of simulations requested (S= 5000)
6. Permute the table of correlates to obtain 5000 independent simulations
7. Test each of the 5000 independent feature combinations on the trained model M.
8. Select the top decile performing simulations.
9. Get the mode feature of each decile (500 S) for each Feature placement holder (F).
10. Remove duplicates (Some features selected multiple times, because they outperform

correlates).
11. With smaller group of features start again with the permutation step at (5).
12. Iterate for three different neural network node constructions and three different seeds.
13. Find the mode features for the final iteration; generally about 1/5th of original features.
14. Retrain a model on the mode of the last iterations (i.e. best lowest-correlative highest-

performing model)
15. Construct a special permutation importance method that removes multi-collinear issues.
16. Iterate by retraining model in (14) on five different seeds to obtain additional permutation

importances.
17. Calculate the doubly correlation adjusted p-values, select feature where p-value > 0.05 (at this

point should be about 90%+ of all features)
18. The result of the p-value table is the result of the features that are the most proximate to the

target value.
19. At this point you can do a SHAP analysis to further highlight feature characteristics.

In my notebook, I have hardcoded some values, but this model is flexible and these parameters can
be automated. Although this method is experimental, it has shown to produce good results (It can
actually be tested with causal analysis). Also, instead of the feature-specific approach above, you can
also grab the first PCA component from a group of correlated features. You can get to understand how
these features behave collectively and what characteristics they exhibit. You can then use this as new

Electronic copy available at: https://ssrn.com/abstract=3420952

features to the model. I rarely do this, as I am interested in the best performing features as opposed
to the best performing group of features.

Another approach would be to permute all correlated features together and assign to them a mutual
Permutation importance. When you use GBMs you can additionally use column-wise subsampling
during model training in the presence of correlated features. This is roughly similar to Ridge regression
for linear models in that it tends to evenly spread out importance across correlated features.

Predictor Analysis Example:

Examples from earnings, bankruptcy and restaurant prediction.

Earnings Related Variable Importance and Response Direction for Classification

Name Short Description Score D

𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 This time period's analyst EPS forecast 0.247 -

𝑑𝑖𝑓𝑓−1 The difference between the past actual EPS, 𝑝−1 and 𝑝−2 0.119 -/+

𝑝−1 Actual EPS 𝑡−1 0.082 -

𝑑_𝑒_𝑑𝑖𝑓𝑓−4
Difference between the past actual, 𝑝−4 and forecast
𝑒𝑠𝑡_𝑎𝑣𝑔𝑡−4

0.073 +

𝑑𝑖𝑓𝑓−4 The difference between actual EPS 𝑝−4 and actual 𝑝−1 0.060 -/+

Other 57 other earnings-related variables. 0.212

Total 0.794

This table identifies the most important variables as identified by the Gini importance which measures the
average gain in information. The variable importance measure (Score) is based on all variables. D identifies
the direction of the 'coefficient' as identified by the partial dependence process.

The most important earnings-related variable is the forecast itself, 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 this is expected because
the purpose of the model is to identify deviations from this amount and the actual, it, therefore,
provides a measure of reference to the other variables of the model. Countless papers have identified
the performance of analysts' forecasts in forecasting earnings as recapped by Brown (1987b). The
lower the forecasted EPS the more likely a surprise is to occur all else equal, 32% of the outcome is
attributable to this value. A lower EPS could proxy for a smaller firm or any other attributes. The
second and fifth most important variable, is the difference between the actual earnings between
𝑡−1 and 𝑡−2, called 𝑑𝑖𝑓𝑓−1, and the difference between 𝑡−1 and 𝑡−4, called 𝑑𝑖𝑓𝑓−4 These are novel
variables not yet identified by past research. It basically says that the past increases in earnings are an
important variable for predicting future surprises, which makes intuitive sense. If the value is very
high, surprises become more likely. Surprises are also more likely if the value gets very low. For a lot
of the observations, the value is very small, decreasing the likelihood of surprises. The measure is u-
shaped, which is indicative of a sort of variance measure. The next important value is the actuals
earnings at time 𝑡−1, called 𝑝−1.

Research by Bradshaw et al. (2012), have shown that the past annual earnings, often outperform, not
just mechanical time series models, but also analyst' forecasts. Similarly, past quarterly earnings also

Electronic copy available at: https://ssrn.com/abstract=3420952

seem to be an important value in predicting the next quarter's earnings surprise and is similarly shaped
to the analyst forecast, 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡. The relationship shows that where 𝑝−1 is large and 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 is
simultaneously low, then a positive surprise is likely to occur more than 90% of the time, all else equal.
Further, where 𝑝−1 is low and 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡 is high then a surprise is unlikely to occur. The next important
variable is the difference four quarters ago, i.e., one year between the forecast, 𝑒𝑠𝑡_𝑎𝑣𝑔𝑡−4 and the
actual value, 𝑝−4. The importance of this variable was also expected as Easterwood & Nutt (1999) and
Fried & Givoly (1982) separately showed that past errors tend to persist. The larger the difference, the
higher the likelihood of surprise. Other variables that showed an above 2% importance includes rolling
averages and weighted rolling averages of the difference between past earnings and analyst forecasts,
and the standard deviation of analyst forecasts.

Category Importance Analysis (Multiple Importance Measures)

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Category CI RCLI
Top 50

Post
GFC
RCLI

Pot F wF 24
CI

PCA
10

RIT Avg. Fin.

Assets & Liabilities 1 1 1 1 1 1 1 1 1 1.0 1

Solvency 2 3 2 2 2 2 3 2 2 2.2 2

Income 3 2 3 3 4 5 2 4 3 3.2 3

Valuation & Profitability 4 4 4 4 3 4 5 3 4 3.9 4

Equity 5 5 6 5 5 3 4 6 5 4.9 5

Expense 6 6 5 6 7 6 6 10 7 6.6 6

Efficiency 7 7 7 8 6 7 7 9 6 7.1 7

Other 8 8 8 9 8 8 10 8 8 8.3 8

Liquidity 9 9 9 10 8 9 9 5 10 8.7 9

Cash Flow 10 10 10 7 10 10 8 7 9 9.0 10

This table is an attempt to regroup categories where there is a strong correlation 80% + and to calculate the
rank of the categories according to 9 different predictive importance strategies. This table calculates the
equal weighted average of nine ranking methods (10). (1) Is the normal importance measure (gain measure)
calculated for all variables in every category. (2) Is the gain measure for only the top 50 variables. (3) Is the
gain measure after the GFC. (4) Is the ranking according to the potency measure, being the category
importance weighted by the number of variables in each category. (5) Is a measure (FScore) that tallies the
amount of variable splits across all trees within each category. (6) Measures the FScore weighted by the
probability of the splits to take place. (7) Is the overall gain measure for a newly created model that only
incorporates the 24 best variables. (8) Is the importance of the first PCA component for each category. (9)
Avg. is the equal-weighted rank average for each category. (10) Is the final ranking obtained by ranking the
raw average. When percentage growth measures were removed from the categories, all categories
remained unchanged apart from a swap between Other and Liquidity. A further split in category where
solvency ratios were split between capital structure, and coverage and cash flow ratioratios resulted in the
following rank among categories, (1) asset and liabilities (2) Income (3) valuation and profitability, (4) capital
structure, (5) equity, (6) interest coverage, (7) expense, (8) efficiency, (9) cash flow ratios, (10) other ratios
(11) liquidity ratios, (12) cash flow values. The ratio values are italicised.

Electronic copy available at: https://ssrn.com/abstract=3420952

Interaction Pair Partial Dependence Plots (Depth Two)

 (1) Top left is the interaction between Interest and Related Expense (xint) and the EPS Excluding Extra. Items
(epspx) and resulting response. (2) Top right is the interaction between Price to Sales (ps) and Long-Term
Debt (dltt). (3) Bottom left is the interaction between Total Debt to Invested Capital (totdebt_invcap) and
Income Before Extraordinary Items (ibc) and the interaction effect on the bankruptcy outcome. (4) Bottom
right is the interaction between Total Liabilities (lt) and the EPS Excluding Extra. Items (epspx).

(1) (2)

(3) (4)

Electronic copy available at: https://ssrn.com/abstract=3420952

Cross Tab - Top Variable Interactions

totdebt_invcap ps lt xint pi

ibc 779 704 63 45 13

pi 66 585 209 338 0

epspx 228 76 551 509 34

dltt 17 418 156 34 14

debt_assets 43 127 239 77 390

ppent 71 279 82 28 61

This table represents the most important interaction pairs as measured by the gain statistic at an interaction
depth of two. The table has been constructed to highlight the top ten interactions. For completeness, the
surrounding interactions have also been included. Variables vertically follows, Income Before Extraordinary
Items (ibc), Pre-tax Income (pi), EPS Excluding Extra. Items (epspx), Long Term Debt (dltt), Total Debt to Total
Assets (debt_assets), Property Plant & Equipment (ppent). And horizontally, Total Debt to Invested Capital
(totdebt_invcap), Price to Sales (ps), Total Liabilities (lt), Interest and Related Expense (xint).

Interaction Analysis – Depth Three

 Term 1 Sign Term 2 Sign Term 3 Sign RII Gain

(1) epsfx - ibc - totdebt_invcap + 100 456

(2) debt_at + pi - rd_sale - 95 435

(3) dpc - equity_invcap + ps - 92 419

(4) ibc - ps + totdebt_invcap + 88 402

(5) dltt + ibc - ps - 84 383

(6) dltt + pi - ps - 84 382

(7) ibc - ps - ps_prtc - 83 378

(8) ibc - ibc - totdebt_invcap + 79 362

(9) dltt + ps - txt + 76 348

(10) ibc - ppent + ps - 74 336

(11) at + debt_at + epspx - 68 310

Out of the top 50 variable list, there are millions of ways to conjure up directional relationships. Due to the
nature of nonlinear relationships, to conceptually understand the web of relationship, it is best to identify the
top interaction pairs. This table represents the most important interaction pairs as measured by the gain
statistic at an interaction depth of three. For easier reading, I also report the relative interaction importance
(RII). The sign purely indicates the average direction of each variable. The interaction terms are much more

Electronic copy available at: https://ssrn.com/abstract=3420952

informative than single standing variables. Interactions is at the core of what gradient boosting tree models
are all about. Unique Terms 1 are EPS (Diluted) - Excl. Extra. Items (epsfx), Assets - Total (at). Unique Terms 2
are Common Equity/Invested Capital (equity_invcap). Unique Terms 3 are Research and Development/Sales
(rd_sale) and Income Taxes - Total (txt).

Bubble Plot and Ranking of each Model's Most Important Categories.

This figure reports the relative importance of the five outcome classification models and the associated
accounting dimensions. There is a large amount of heterogeneity between the different classification models.

An important benefit of SHAP is that it provides the aggregate direction a feature has in relation

to the response variable. Figure 1 shows how the SHAP values interact with each other to produce the

final output. Although, a few variables cause a large amount of the movement, Figure 1 also shows that

less important variables play a large role in aggregate due to the sheer number of variables present.

Figure 2 shows these predictions vertically while sorting them by similarity to show the effect these

different features have on the final outcome. Here, I have only plotted a subsample of a hundred random

observations. The final output is where the red and blue stacks meet. Each vertical slice is a DNA strand

of sorts displaying the characteristics driving the predicted outcome of each observation.

Electronic copy available at: https://ssrn.com/abstract=3420952

Figure 1: Feature Effect on Log-odds Output for a Single Observation

The plots above show an example of the predicted outcomes for two restaurants' observations. The final output

is the probability of restaurant closure (0) and the probability of restaurant success (1). As can be seen from

the plots, a multitude of features lead to the final predicted outcome. The top observation is predicted to remain

open and the bottom observation is predicted to close within the next two years with a decision threshold (rule)

of 50%.

Figure 2: Feature Effect on Log-odds Output for a Subsample

This plot replicates Figure 1 but for a subsample of 100 firms that are vertically plotted. The samples are sorted

by similarity and stacked next to each other. In this plot the predicted outputs are where the blue and red

boundaries meet. The variable effects are stacked vertically. The predicted outcome is where the blue and red

areas meet. This plot is a close analogue to a DNA strand, the intensity and direction of each of the 430

characteristics determines the final outcome.

Electronic copy available at: https://ssrn.com/abstract=3420952

Figure 3: Distribution of Individual Feature Effects on Output

This chart reports all the predicted outcomes for each individual variable. It takes on the form of multiple

horizontal violin plots, in that it not only reports the effect on outcome but also reports the feature size based

on the continuous colour legend and the distribution of the outcomes.

Electronic copy available at: https://ssrn.com/abstract=3420952

Figure 4: Individual Conditional Expectation (Depth One)

These plots point out the non-linear nature the top 4 features. These figures report the marginal relationship of

the feature with the predicted outcome. The green marks are open restaurants, the red marks are closed

restaurants. The black line (yellow outline), presents the features' marginal effect on the predicted outcome for

all observations around the central points on the x-axis. The blue lines are an indication of how all other features

further effect the observations to produce the final outcome. (1) Top left is the oldest review of the restaurant

in number of days; the older the less likely the restaurant is to close (2) Top right is the number of useful

(critical) reviews; the most critical the more likely the restaurant is to close (3) Bottom left is the average age

of the oldest review across the chain in number of days; the older the average first review across the chain the

less likely the individual restaurant is to close (4) And bottom right measures the slope of historic ratings as

measure by stars out of five; the larger the slope the less likely the restaurant is to close.

(1) (2)

(3) (4)

Electronic copy available at: https://ssrn.com/abstract=3420952

Appendix

Limitlessness

Many things in machine learning is limitless in the sense that you can tweak it endlessly to achieve
some converging performance ceiling. This include the countless ways to do cross validation, to select
hyperparameters, to do up-and down-sampling, to perform outlier removal strategies, missing data
replacement strategies and many more. Further, features can for example be transformed in an
infinite number of ways; the dimensions of features can also be reduced and inflated in innumerable
ways; features can be generated through countless unsupervised methods; features can simply be
combined, added, or deducted. It is truly limitless.

The question is how do we know if any of these adjustments would lead to a better model? Most of
the time we use proxies for potential performance (ppp) like the Akaike information criterion (AIC), or
feature-target correlation. These approaches get us halfway towards a good outcome. Another way
to go about it is to retest your algorithm once you introduce a new adjustment. The tests can remain
in-sample, but for each new test, the cross-validating sections should change, or some other form of
randomness have to be introduced to ensure that these adjustments do not overfit the validation set.
You could also develop two algorithms with different fundamental construction side by side and do
constant experimentation; e.g. to know if adjustments should be added to your primary algorithm
(XGBoost) test the improvements in your secondary algorithm (CNN). In addition, make sure to
perform the correct pre-processing transformations for each algorithm. A cleaner method is to use
new data each time you introduce a new adjustment, however, the luxury of a lot of data is hard to
come by, even in finance.

Depending on whether you are working with regression or classification problems, you should look at
the mean increase in for example accuracy and an increase in the ROC (AUC) score. If the model
improves, accept the adjustment. If it is expensive to retrain a full model, create smaller models to do
these tests on. If it is still a problem, then resort to the ppp metrics. Do note that the more tests you
perform, the more you are abusing the data and increasing the likelihood of overfitting, leading to
poor out of sample performance. Finally, one of the best way to automate this experiment testing
process is with Bayesian optimisation.

Alternative Data

About 40 years ago Richard Dennis and William Eckhardt put systematic trend following systems on a
roll, 15 years later statistical arbitrage made its way onto the scene, 10 years later high frequency
trading started to stick its head out, in the meantime, machine learning tools was introduced to make
statistical arbitrage much easier and more accurate, lately we have seen the rise of alternative data
strategies, posed to be as important as the previous three ‘revolutions’. Although the commercial
potential of AI and alternative data is enormous, trading results will side with groups with bigger
machines, more innovative data scientists and larger and better datasets.

As much as I hate the recent developments in the area, depending on the size of your organisation,
some of the data might be of benefit, not because they produce independent alpha, but because they
provide for important interaction effects with current data. After leaving my morality at the door, I
would give special attention to scraped data (see the restaurant example in Quantamental strategies,
or follow this data), as well as credit card, email transaction and web traffic data; most other data are
overblown; the idea is to get as close to the management accounts as possible, the above are good
proxies. I have also heard of a few people that are successful earnings call transcripts.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://drive.google.com/drive/folders/12aZ7vg_3HIdPYZ4GavYY7BjptlAPGFtc?usp=sharing

Recursive Learning:

It is important to be intelligent all the way down. Although one can create reinforcement-learning
agents that are able to ingest a lot of data and make profitable decisions inside an environment, you
are often better off to create more simple agents at the lower level while pyramiding additional
decision-making responsibilities upwards. Lower level agents can look at pricing, fundamental and
limited capital market data while a meta-agent can select or combine strategies based on potential
regime shifts that happen at the economic level. A meta-learner effectively chooses between a few
hundred models based on the current macro-regime. At the end, all the meta-learners, or depending
on how deep you go, meta-cubed learners should form part of an overall portfolio. The core function
is to carry our portfolio level statistical arbitrage to the extreme using all the tools available financial
or otherwise.

It is important to understand this concept, all the data do not have to be ingested at the lower levels.
Eventually all informative data should be incorporated somewhere in the hierarchical structure. And,
to know where becomes an optimisation problem in itself. I will introduce another concept that is
controversial but makes economic sense. Once your model is fully developed, introduce a little
random gaussian noise at as many levels as possible. When large systematic funds collectively dive,
these funds it is because they are too focused on next period performance as opposed to long-term
generalisability. Discretionary funds meanwhile do fine because their investment decisions do not
follow a particular rationale. Systematic funds should regularise their trading strategies. This is going
to become more important as new entrants crowd out the incumbents and the incumbents crowd out
themselves.

You need not use an additional level of reinforcement learning algorithm; you can also use clustering
algorithms. One can discover multiple economic regimes by simply using a KNN clustering technique
to select the potential regime of the last 30 days. Then one can perform strategy selection by looking
at the historic success across all regime types. While doing this, pay attention to the stability of
clusters. The assignments might not persist in time series; when you face these problems always
remember that MiniBatch and Ward clustering algorithms tend to be more persistent.

Tricks and Tips:

• Create a lagged variable of the difference between the past predicted and past true value.
Naturally set this value to zero at the start of the process.

• To identify information leakage, or whether data ‘peeking’ has occurred, look at which feature
best predicts whether an observation is in the test or training set.

• Difference between a good and great strategy is not that important, position sizing, risk
management, resilience, execution, and infrastructure are key – and stay wary of front
running brokers.

• Decide on high value vs low value strategies by considering the strength of your buying power.

• Using an unbiased auto-ml model I have investigated the returns that could be earned using
machine learning models over time. The profitability of using general ML and publicly available
data is monotonously decreasing. You either have to join the march down to zero marginal
profits or think outside of the auto-ml box – note doing this is already quite a high threshold.

• Discretionary funds should think of a post-ml strategy, where you seek to understand how far
reaching these models can be and to reaffirm a strategy that invests beyond an ML-assisted
purview.

• Understand that finance always goes through its crazes, from chaos theory to GARCH models.
Although ML could generally be revolutionary, I suspect it will mostly be the result of
minimising overheard costs as opposed to improving alpha.

Electronic copy available at: https://ssrn.com/abstract=3420952

• Change nodes in recurrent neural networks to position different levels of importance, not just
in terms of time but also by weighting other potential criteria such as volume, whilst still
preserving the causal order.

• Never forget outlier detection and Winzorisation of data.

• If you are working with long term data, adjust the values with inflation, otherwise it might
lead to some low-level time leakage (yes these models are that smart).

• When PCAs are non-performant, try ICAs, they are better at distinguishing non-Gaussian
signals, even better, entropy component analysis.

• Always execute early stopping where possible on a validation set.

• Always know the power of your statistical tests; you might be throwing away many potential
true positives.

• Be cautious of trading strategies that produce stable daily profits, there is a good chance that
you are engaged in negative skew trading.

• Do not be afraid to pool multiple instruments together, it is an excellent way of getting more
data history.

• Do not be afraid to focus on the Sharpe or other risk adjusted performance measures and
resorting to leverage to buy returns.

• Bootstrap your optimisation where possible, with that I mean repeat the optimisation many
times and average out the resulting weights. This is already quite common in machine
learning.

• Discrete mathematics turn up in many ML problems, often times there is no closed form
solutions, and the only hope is to use brute force.

• There is at least twenty different cross-validation techniques that I have encountered or
created to suit a specific task. One can be very creative with cross-validation techniques, hold
two rules in mind when working with values in time series, do not leak too much information
and give added importance to more recent results; these two would always be in conflict.

• The next tip might sound juvenile, but do not forget to retrain your model on the entire train
set with the newly discovered optimised hyperparameters.

• Unlike some researchers, I believe in the power of backtests to improve models to the point
they are used to adjust hyperparameters (some call this model development). However, once
you look at the performance on the test data (out of sample back-test), you should not change
the model anymore, you should either keep the model or discard the model. If you keep the
model, you can retrain and re-optimize your parameters with both the test and train data.

• The less you overfit the less you have to worry about leakage.

• Make sure that your data is not misaligned, pay special attention to fundamental data, the
data that should be recorded is the data that was available to the public at that point - also
make sure not to include the adjusted amounts, as the adjustments only occurred later.

• PCAs are sensitive to outliers, so Winzorise the data at the 2.5% and 97.5% percentiles. It is
also good practice to normalise the data if you have variables with different units of
measurement before performing PCA.

Gradient Boosting Model

Supervised learning refers to the mathematical structure describing how to make a prediction 𝒚𝒊 given

𝒙𝒊. The value we predict, 𝒚𝒊, has different interpretations depending on whether we are implementing

a classification or a regression task. In classification task prediction, 𝒚𝒊, is the probability of an earnings

surprise event of some specified threshold. For the regression task, the 𝒚𝒊 is the actual EPS value for

the quarter. The inputs, 𝒙𝒊, have been selected based on selection procedures applied once for each

Electronic copy available at: https://ssrn.com/abstract=3420952

of the models. Apart from the different prediction types, in the classification task, the model gets

logistic transformed to obtain a vector of probabilities for each observation and associated categories.

In supervised learning, parameters play an important role. The parameters are the undetermined part

that we are required to learn using the training data. For example, in a linear univariate regression,

𝑦 𝑖 = ∑ 𝜃j𝒙𝒊𝒋𝑗 , the coefficient 𝜃 is the parameter.

The task is ultimately to find the best parameters and to choose a computationally efficient way of

doing so. This choice is largely driven by whether or not we are working with a regression or

classification problem. To measure a model's performance, given some parameter selections, we are

required to define an objective function. The following is a compressed form of the objective function,

𝑂𝑏𝑗(𝛩) = 𝐿(𝜃) + 𝛺(𝛩). In this equation, L is the training loss function; the regularisation term is 𝛺.

The training loss function tests the predictive ability of the model using training data. A commonly

used method to calculate the training loss is the mean squared error, 𝐿(𝜃) = ∑ (𝒚𝑖 − 𝑦 𝑖)
2

𝑖 . Thus, the

parameters get passed into a model that calculates, 𝒚 𝒊, a series of predictions, that gets compared

against the actual values in a mean squared error function to calculate the loss. The regularisation

term controls the complexity of the model, which helps to avoid overfitting. The Extreme, X, of the

XGBoost model, relates to an extreme form of regularisation that controls for over-fitting, leading to

improved performance over other models. There are countless ways to regularise models, in essence,

we constrain a model by giving it fewer degrees of freedom; for example, to regularise a polynomial

model, we can transform the model to reduce the number of polynomial degrees. The tree ensemble

can either be a set of classification or a set of regression trees. It is usually the case that one tree is

not sufficiently predictive, hence the use of a tree ensemble model that sums the predictions of many

trees together. Mathematically, the model can be written in the following form 𝑦̂𝑖 =

∑ 𝑓𝑘(𝒙𝒊)
𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝐹. Here, K is the number of trees, and f represents one possible function from the

entire functional space F. F is a set of all possible classification and regression trees (CARTs). This

expression then simply adds multiple models together that lives within the allowable CART function

space. Therefore, combining the model, the training loss and regularisation function, we can gain our

objective function and seek to optimise it, the function can be written as follows, 𝑂𝑏𝑗(𝜃) =

∑ 𝑙 (𝒚𝒊, 𝑦̂𝑖
(𝑡)
)𝑛

𝑖 +∑ 𝛺(𝑓𝑖)
𝐾
𝑘=1 . Thus far, the model is similar to that of a random forest, the difference

being in how the models are trained.

For the next part, we have to let the trees learn, so for each tree, we have to describe and optimise

an objective function, we can start off by assuming the following function, 𝑂𝑏𝑗 = ∑ 𝑙(𝑦𝑖 ,)
𝑛
𝑖 +

∑ 𝛺(𝑓𝑖)
𝑡
𝑖=1 . By looking at the function it is important that we identify the parameters of the trees. We

want to learn the functions, 𝑓𝑖, each which contains a tree structure and associated leaf scores. This is

more complex than traditional methods where you can simply take the gradient and optimise for it.

Instead, Gradient Boosting uses an additive strategy, whereby we learn to adjust and add an extra tree

after each iteration. We write our prediction value at step t as 𝑦̂𝑖
(𝑡)

, so that we have 𝑦̂𝑖
(𝑡)
=

∑ 𝑓𝑘(𝒙𝒊) = 𝑦̂𝑖
(𝑡−1)

+𝑡
𝑘=1 𝑓𝑡(𝒙𝒊). Then we simply choose the tree that optimises our objective, 𝑂𝑏𝑗(𝑡) =

∑ 𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡)
)𝑛

𝑖 + ∑ 𝛺(𝑓𝑖) = ∑ 𝑙 (𝒚𝒊, 𝑦̂𝑖
(𝑡−1)

) +𝑛
𝑖=1 𝑓𝑡(𝒙𝒊) + 𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑡
𝑘=1 . By using MSE as

the loss function, it becomes 𝑂𝑏𝑗(𝑡) = ∑ [2 (𝑦̂𝑖
(𝑡−1) − 𝒚𝒊) 𝑓𝑡(𝒙𝒊) + 𝑓𝑡(𝒙𝒊)

2] +𝑛
𝑖=1 𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.

The form of MSE is easy to deal with. The Taylor expansion can simply be taken to the second order.

𝑂𝑏𝑗(𝑡) = ∑ [𝑙 (𝑦𝑖 , 𝑦̂𝑖
(𝑡−1)) + 𝑔𝑖𝑓𝑡(𝒙𝒊) +

1

2
ℎ𝑗𝑓𝑡

2(𝒙𝒊)]
𝑛
𝑖=1 + 𝛺(𝑓𝑡) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, where 𝑔𝑖 and ℎ𝑖 is

defined as, 𝑔𝑖 = 𝜕𝑦̂ 𝑖
(𝑡−1) 𝑙(𝒚𝒊, 𝑦̂𝑖

(𝑡−1)
), ℎ𝑖 = 𝜕𝑦̂ 𝑖

(𝑡−1)
2 𝑙(𝒚𝒊, 𝑦̂𝑖

(𝑡−1)
). After all the constants are removed,

then the objective at t get transformed to, ∑ [𝑔𝑖𝑓𝑡(𝒙𝒊) +
1

2
ℎ𝑗𝑓𝑡

2(𝒙𝒊)]
𝑛
𝑖=1 + 𝛺(𝑓𝑡). This then becomes

Electronic copy available at: https://ssrn.com/abstract=3420952

an adjusted optimization function for the new tree. Although we have looked at the training step, we

have not looked at regularisation yet. The next step is to specify how complex the tree should be,

𝛺(𝑓𝑡). To do this we can improve the tree definition to F(x), 𝑓𝑡(𝒙) = 𝑤𝑞(𝒙) , 𝑤 ∈ ℝ
𝑇 , 𝑞: ℝ𝑚 →

{1, 2,… , 𝑇}. Here w represents the scores of the leaves presented in vector form and q represents a

function that assigns each point to the appropriate leaf, lastly T denotes how many leafs there are.

The complexity can be defined as 𝑎 𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1 ; there are more ways to formulate and

define how complex a model is or should be in practice, but this one is quite practical and easy to

conceptualise. Once the tree model is described, the objective value w.r.t. the t-th tree can be written

as follows: 𝑂𝑏𝑗(𝑡) = ∑ [𝑔𝑖𝑓𝑡(𝒙𝒊) +
1

2
ℎ𝑗𝑓𝑡

2(𝒙𝒊)]
𝑛
𝑖=1 + 𝛾𝑇 +

1

2
𝜆 ∑ 𝑤𝑗

2 𝑇
𝑗=1 = ∑ [(∑ 𝑔𝑖𝑖∈𝐼𝑗)𝑤𝑗 +

𝑇
𝐽=1

1

2
(∑ 𝑔𝑖𝑖∈𝐼𝑗 + 𝜆)𝑤𝑗

2] + 𝛾𝑇, where I𝑗 = {i|q(x𝑗) = j} represents a full set of all the data points. as

have been assigned to the j-th leaf. The equation can then further be compressed by describing 𝐺𝑗 =

 ∑ 𝑔𝑖𝑖∈𝐼𝑗 and 𝐻𝐽 = ∑ ℎ𝑖𝑖∈𝐼𝑗 , then 𝑂𝑏𝑗(𝑡) = ∑ [𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2]𝑇
𝐽=1 + 𝛾𝑇. In the preceding

equation the weights, 𝑤𝑗 are independent w.r.t each other, the form 𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤𝑗

2 is

quadratic, and the best weight for a structure q(x) is given by the following expression. 𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗+𝜆

, 𝑜𝑏𝑗∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆
𝑇
𝑗=1 + 𝛾𝑇. This equation measures how good a tree structure 𝑞(𝑥) is. A lower

score is better for the ultimate structure of a tre. Now that we know how to measure the fittingness

of a tree is, we can identify all the trees and select the best one. It is, however, not possible to approach

it this way and instead has to be done for one depth level of a tree at a time. This can be approached

by splitting a leaf into two sections and then recording its gain. The following equation represents this

process, 𝐺𝑎𝑖𝑛 =
1

2
[
𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝑙+𝐺𝑙)
2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾. If the gain obtained is equal to or smaller than 𝛾,

then it would be better if we do not add the branch to the tree, this is often referred to as the pruning

technique. We basically search for the ultimate split, if all instances are sorted in order, we simply scan

left to right to sufficiently calculate the structure scores of all possible solutions and then identify the

most efficient split.

Finance and Machine Learning

Each industry will be touched by machine learning. In the future, I would go down this mapping to
identify all the financial domains bound to be changed by recent advances in machine learning.

1. Corporate and Retail Banking
2. Investment Banking
3. Insurance Services
4. Payment Services
5. Financial Management

o Public Finance
o Financial Economics
o Management Accounting

6. Advisory Services
o Personal Finance
o Consulting

7. Investment Services
o Private Equity and Venture Capital
o Wealth Management
o Asset Management

Electronic copy available at: https://ssrn.com/abstract=3420952

o Broker Dealer
 Liquidity

• Market Making

• Predicting Customer Needs
o Recommender AI System

• Shocks and volatiliy
 Strat:

• Extreme Risk

• Simulation
 Capital Management

Other SSRN Papers

• Financial Event Prediction using Machine Learning

• Predicting Corporate Bankruptcies

• Predicting Earnings Surprises

REFERENCES

Black, F., & Litterman, R. (1990). Asset allocation: Combining investor views with market

equilibrium. Goldman Sachs Fixed Income Research, 115

Britten‐Jones, M. (1999). The sampling error in estimates of mean‐variance efficient

portfolio weights. The Journal of Finance, 54(2), 655-671.

de Prado, M. L. (2018). Advances in financial machine learning (1st ed.). Newark: John Wiley

& Sons, Incorporated.

de Prado, M. L. (2016). Building diversified portfolios that outperform out of sample. The

Journal of Portfolio Management, 42(4), 59-69.

Jiang, Z., Xu, D., & Liang, J. (2017). A deep reinforcement learning framework for the

financial portfolio management problem. arXiv Preprint 1706.10059

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

1412.6980

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D. (2015).

Continuous control with deep reinforcement learning. arXiv Preprint 1509.02971

Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep learning for finance: Deep portfolios.

Applied Stochastic Models in Business and Industry, 33(1), 3-12.

Rapach, D. E., Strauss, J. K., Tu, J., & Zhou, G. (2019). Industry return predictability: A machine
learning approach. The Journal of Financial Data Science, 1(3), 9-28.

Electronic copy available at: https://ssrn.com/abstract=3420952

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3481555
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420889
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3420722

Snow, D. (2020). Machine Learning in Asset Management—Part 1: Portfolio Construction—

Trading Strategies. The Journal of Financial Data Science, 2(1), 10-23.

Xing, F. Z., Cambria, E., Malandri, L., & Vercellis, C. (2018). Discovering bayesian market

views for intelligent asset allocation. Paper presented at the Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, 120-135.

Electronic copy available at: https://ssrn.com/abstract=3420952

